
�

Date Published:

Reviewer:

Licenses:

This article is licensed under: cb

Keywords:

research data management,

visualization, figure, plot, mapping,

referencing, ID

Data availability:

Data can be found here:

example.py

Software availability:

Software can be found here:

git.rwth-aachen.de/plotid/

plotid_python

RESEARCH ARTICLE

plotID - a toolkit for connecting research data and

visualization

Martin Hock�
1

Hannes Mayr�
1

Manuela Richter�
1

Jan Lemmer�

Peter F. Pelz�
1

1. Chair of Fluid Systems, Technische Universität Darmstadt, Darmstadt.

1

Abstract. The highest amount of published information on paper is contained in visualizations

such as 2D and or 3D plots. Supporting a generic research workflow, plotID provides tools

that can a) create and anchor a reference (ID code, URL,...) for and b) package figures,

data, code and parameters used to create the figure. The code is provided as tools with

small impact, that need to be used consciously by the researcher and does not aim to

relieve the researcher of his duty to keep his digital working environment organized. The

exported packages help immensely to make results reusable and repeatable. The initial

implementation was created in Matlab and used internally before rewriting the tool in the

Python programming language, for easier distribution and adaption to diverse environments.

2

1 Statement of need3

In a typical research workflow, the researcher collects data by performing experiments, sim-4

ulations, evaluations of existing data and other sources. While assessing the available data,5

visualizations are created to make data easier to interpret. Some of the figures created at this6

early stage are still useful at later stages up to the publication of results, but the rough scripts7

and data used to create them have been lost or changed. Other figures are created to illustrate8

context, connections or support claims made in a paper.9

To reduce the effort of organizing figures along with all necessary data and metadata for later10

review and reuse, plotID was developed. The authors could not find any other software that11

aimed at this specific task, although some frameworks aiming to organize the full workflow12

achieve similar snapshots by version controlling all software and data in repositories. (See for13

example DataLad[6] Labelling the figure with a corresponding ID, however, is unique to plotID.14

2 Design15

The tool has been designed to be integrated seamlessly into existing scripts. To keep the usage16

simple, no GUI was created. The first steps need to be easy. By copying example code into17

1

https://git.rwth-aachen.de/plotid/plotid_python/-/blob/main/plotid/example.py
git.rwth-aachen.de/plotid/plotid_python
git.rwth-aachen.de/plotid/plotid_python
https://orcid.org/0000-0001-9917-3152
https://orcid.org/XXXX-XXXX-XXXX-XXXX
https://orcid.org/0000-0003-1060-2622
https://orcid.org/0000-0002-0638-1567
https://orcid.org/0000-0002-0195-627X


RESEARCH ARTICLE plotID

Figure 1: Research workflow from left to right; Afterwards following the chain of references from

right to left

’plotID-workflow’ by Martin Hock, licensed under CC-BY-SA 4.0 cba

the users’ own scripts and executing this successfully, users stay encouraged to continue using18

plotID and explore its advanced functionalities.19

plotID aims to help during the early research process to decrease the work of making publications20

reproducible later on. It provides two importable modules and can be integrated into the user’s21

scripts with one line of code each.22

The first module creates a (unique) ID and stamps this ID onto an object containing a visualization,23

while the second module helps organize all relevant code, software, and data that went into24

creating this graphic, into one complete package.25

If this specific visualization is later chosen to be included in a publication, the ID can be replaced26

by a permanent identifier like a DOI and the package of code, software and data can be published27

at the location referenced by the DOI. The ID on in the published paper will then directly reference28

the data, software and code used to create it, hence curating reproducibility.29

3 Implementation30

The first version of plotID was implemented in Matlab since this is the most widely used31

programming language in the local working environment and the language the authors had the32

highest familiarity with. After reaching a usable state, the focus shifted to rewriting the tool33

in Python, the second most used programming language (locally). In addition to being widely34

used in the engineering and research community, Python is non-proprietary, open source, easy35

to install or even shipped along many operating systems. Python also offers a package index36

(PyPI) and installer (pip) for easy distribution of software packages.37

Currently, to run plotID a Python version ≥3.10 is required. The code is open source under the38

Apache-v2.0 license. The current release version is v0.1.2 showing a pre-alpha state.39

4 Example script40

The following script shows how plotID is used.41

ing.grid, 2022 2

https://creativecommons.org/licenses/by-sa/4.0/


RESEARCH ARTICLE plotID

10 # %% Import modules42

11 import numpy as np43

12 import matplotlib.pyplot as plt44

13 from plotid.tagplot import tagplot45

14 from plotid.publish import publish46

1547

16 # %% Set Project ID48

17 PROJECT_ID = "MR04_"49

1850

19 # %% Create sample data51

20 x = np.linspace(0, 10, 100)52

21 y = np.random.rand(100) + 253

22 y_2 = np.sin(x) + 254

2355

24 # %% Create sample figures56

2557

26 # 1. figure58

27 IMG1 = 'image1.png'59

28 FIG1 = plt.figure()60

29 plt.plot(x, y, color='black')61

30 plt.plot(x, y_2, color='yellow')62

31 plt.savefig(IMG1)63

3264

33 # 2. figure65

34 IMG2 = 'image2.png'66

35 FIG2 = plt.figure()67

36 plt.plot(x, y, color='blue')68

37 plt.plot(x, y_2, color='red')69

38 plt.savefig(IMG2)70

In this part, the plotID modules and those necessary to create figures and images are imported.71

The variable PROJECT_ID is set to provide a static part of the ID. Random data is used to create72

two figures with matplotlib as well as image files.73

42 # %% TagPlot74

4375

44 # If multiple figures should be tagged, they must be provided as list76

.77

45 FIGS_AS_LIST = [FIG1, FIG2]78

46 IMGS_AS_LIST = [IMG1, IMG2]79

4780

48 # Example for how to use tagplot with matplotlib figures81

49 [TAGGED_FIGS, ID] = tagplot(FIGS_AS_LIST, 'matplotlib',82

50 prefix=PROJECT_ID, id_method='time', location='west')83

5184

ing.grid, 2022 3



RESEARCH ARTICLE plotID

52 # Example for how to use tagplot with image files85

53 # [TAGGED_FIGS, ID] = tagplot(IMGS_AS_LIST, 'image', prefix=86

PROJECT_ID,87

54 # id_method='random', location='west')88

Both matplotlib objects are tagged with a generated ID each, all in one line of code. Tagging the89

image files has been commented out in this case.90

54 # %% Publish91

Files (README.md and LICENSE) and a folder from the code repository are used in place of92

research data files. The folder ending with ’-exports’ is the destination, and ’testimage’ is a freely93

chosen name for the exported image files.94

This also shows that the workflow does not depend on any kind of file format or pre-organized95

structures. Any kind of data can be used, and even if the library creating the visualization is not96

(yet) supported, the resulting image file can still be tagged.97

5 Core functions98

The core functions of plotID are tagplot() and publish(). tagplot() generates an ID and adds this99

ID to the figure object. publish() saves the figure object and image file, along with the script100

file, plotID was called from – everything necessary to recreate the visualization from scratch. A101

third step to replace an existing ID with a previously registered PID (DOI, hdl, ...) for permanent102

publication is planned.103

5.1 tagplot()104

The tagplot() function creates an ID and tags the figure object with this ID.105

5.1.1 ID106

tagplot() creates a unique ID (unique in a restricted system), that consists of a static part and107

a generated part. The static part is handed over as a parameter and is meant to be used to108

identify a project or organizational unit to which the figure is assigned. The generated part is by109

default created from the UNIX-Time stamp in hexadecimal form. As an alternative option, a110

random number generator can be used. The implementation of the ID is modular, enabling easy111

implementation of individual needs or sources for IDs.112

5.1.2 tagging113

In Python, there are multiple available packages that can produce visualizations from data.114

Adding an ID needs to be implemented for many of these engines separately. For now plotID115

supports figures created with matplotlib and raw image files. The ID is added as an attribute to116

the object and the graphical, visible item.117

ing.grid, 2022 4



RESEARCH ARTICLE plotID

5.1.3 arguments118

Necessary input arguments for tagplot(figs, engine[, prefix, id_method, location]):119

• figs: the figure object or a list of objects, that is to be tagged120

• engine: the plot/image engine to be used (currently only ’matplotlib’ and ’image’ (for plain121

image files) are supported)122

Optional input arguments are:123

• prefix: to define a static part of each created ID (prefix=’Ing.grid-’). Type of string.124

• id_method: to define how the unique part of the ID is created (’random’, ’time’). Type of125

string.126

• location: to define the position the ID is displayed in, relative to the full graphical ob-127

ject (cardinal directions like ’west’, custom inputs for rotation and position are to be128

implemented). Type of string.129

Output arguments are the tagged object and ID, if a list of objects was input, then the output is a130

list as well.131

At this point the figure object can still be modified, for example, to adjust colours or positioning132

or recreate the full plot before exporting a final version.133

5.2 publish()134

This function starts the export process. The source files of the processed data, the visualization135

(including the tagged ID), and the script hosting the call to the publish function are copied136

together into a destination folder.137

5.2.1 script138

A function in Python has access to the file path of the script which it was called from. With this,139

the code for calculations can easily be gathered. For this reason, publish() cannot be called from140

the command line or from within a script that has been started with the ’python -m’ flag. For141

required packages, the ’import’ lines of the script can be parsed into a requirements.txt, which142

can easily be installed with the Python package installer pip. This has not yet been implemented.143

Furthermore, the user has to take care of including additional function files as data paths, that144

have not been imported but are still accessed by the executed script.145

5.2.2 data files146

Data files are handed over as a list of file or folder paths. Ideally, the script already manages a list147

of all files that are read during the execution of the script. It is up to the user to control this. By148

default, the data files are copied to each exported package. For large data files, the centralized149

flag is intended. The data files are copied to a central folder, relative to the export packages. For150

further exports, the data files are compared to the ones already copied and only copied if new151

data files are present. With this, a publication on a data repository could encompass the data files152

in addition to multiple ”satellite” folders containing the specific script, parameters and graphics.153

ing.grid, 2022 5



RESEARCH ARTICLE plotID

For HDF5 files, each package can contain an empty HDF5 file that only contains a link to the154

”real” central data file. While this has proven to be useful in the Matlab implementation, the155

Python version aims to include the ’centralized’ option in a future release.156

5.2.3 arguments157

Necessary input arguments for publish(src_datapath, dst_path, figure, plot_name[, ...]) are:158

• src_datapath: This can be a single or a list of file or folder paths for source data and159

additional function files. The type is a string or a list of strings.160

• dst_path: This is the destination folder path. If it does not exist, the folder will be created.161

The type is a string.162

• figure: This is a figure object, the exact class depends on the plot engine used. This object163

will be turned into an image file.164

• plot_name: This is the name for the graphics objects. The type is a string or list of strings.165

If a single name is passed for multiple objects, a raising number will be added.166

Optional input arguments:167

• data_storage: Currently only ’individual’ and ’centralized’ are available. ’Individual’ will168

store all data in each exported package, while ’centralized’ stores the data files in a central169

folder separate from the packages containing script and image files.170

6 Distribution171

Providing easy ways to acquire and use the software is important for adoption. Currently, the172

following methods are available and described in the repository’s[5] README file.173

6.1 Source Code174

The plain source code is publicly available on a GitLab repository located under git.rwth-175

aachen.de/plotID/plotID_python/[5] and can be directly downloaded or cloned with git.176

1 git clone https://git.rwth-aachen.de/plotid/plotid_python.git177

2 cd plotid_python178

3 pip install -r requirements.txt179

4 pip install .180

6.2 Python Package181

During the current development state, the PyPI test instance[10] is used. With the release of a182

v.1.0, the package will be listed in the official Python Package Index[9]. The installation is done183

with the following command:184

pip install plotid --extra-index-url=https://test.pypi.org/simple/185

ing.grid, 2022 6

https://git.rwth-aachen.de/plotID/plotID_python/
https://git.rwth-aachen.de/plotID/plotID_python/
https://git.rwth-aachen.de/plotID/plotID_python/


RESEARCH ARTICLE plotID

6.3 Debian Package186

A debian package (dpkg) is planned to be provided in the repository git.rwth-aachen.de/plotid/-187

plotid_debian[8]. A .deb file can be installed via dpkg or apt-get on compatible operating188

systems.189

7 Unit tests190

Python offers various libraries for unit testing. plotID is using the unittest module[11], which is191

delivered with Python by default. Tests for each function are defined in the tests folder, along192

with the runner_test.py script which organizes the execution of the tests, by discovering the test193

files based on their location. The unittest module also measured the code covered by the tests,194

and total coverage of less than 95% counts as failed. The tests are executed by a GitLab CI/CD195

pipeline[3] with every commit and merge request along with Pylint[2] and Flake8[1] to check196

against coding style, programming errors and cyclomatic complexity. Commits that fail the197

pipeline tests cannot be merged into the main branch and will not make it into a release version.198

8 Documentation199

To ensure easy access and understanding of the code, Python docstrings[7] have been implemented200

in the source code from the beginning. The docstrings are compiled into HTML using the201

Sphinx[12] python package and GitLab CI-CD[3] creating an automatically generated API202

reference. The documents are hosted using GitLab Pages[4]. This documentation[13] will be203

improved by adding the readme, example code, example use cases and an introductory text until204

version 1.0.205

9 Conclusion206

The idea of plotID is simple yet. As with most research data management operations, the benefit207

for the additional work presents at a later time – although in this case, it presents for the creator208

of data or visualization and not only for later reuse. The code and open source implementation is209

still work-in-progress, but the core functionality is present. Bug reports, merge requests with210

code, ideas for features and all feedback are welcome and best voiced in the GitLab repository.211

10 Acknowledgements212

We acknowledge the help from Jan Stifter and Benjamin Hermann with testing the software and213

feedback on the user interface.214

The authors would like to thank the Federal Government and the Heads of Government of the215

Länder, as well as the Joint Science Conference (GWK), for their funding and support within the216

framework of the NFDI4Ing consortium. Funded by the German Research Foundation (DFG) -217

project number 442146713.218

ing.grid, 2022 7

https://git.rwth-aachen.de/plotid/plotid_debian
https://git.rwth-aachen.de/plotid/plotid_debian
https://git.rwth-aachen.de/plotid/plotid_debian


RESEARCH ARTICLE plotID

11 Roles and contributions219

Martin Hock: Conceptualization, Methodology, Coding, Tests, Writing – original draft220

Hannes Mayr: Coding, Tests, Methodology221

Manuela Richter: Conceptualization, Methodology, Coding222

Jan Lemmer: Conceptualization, Methodology223

Peter F. Pelz: Project administration, Supervision, Funding Acquisition224

References225

[1] GitHub. flake8/index.rst at main · PyCQA/flake8. 2022. URL: https://github.com226

/PyCQA/flake8 (visited on 08/29/2022).227

[2] GitHub. PyCQA/pylint: It’s not just a linter that annoys you! 2022. URL: https://gith228

ub.com/PyCQA/pylint (visited on 08/29/2022).229

[3] GitLab CI/CD | GitLab. 2022. URL: https://docs.gitlab.com/ee/ci/ (visited on230

08/19/2022).231

[4] GitLab Pages | GitLab. 2022. URL: https://docs.gitlab.com/ee/user/project232

/pages/ (visited on 08/29/2022).233

[5] GitLab RWTHAachen. PlotID / plotID_python · GitLab. 2022. URL: https://git.rw234

th-aachen.de/plotid/plotid_python (visited on 08/19/2022).235

[6] Yaroslav O. Halchenko et al. “DataLad: distributed system for joint management of code,236

data, and their relationship”. In: Journal of Open Source Software 6.63 (2021), p. 3262.237

DOI: 10.21105/joss.03262. URL: https://doi.org/10.21105/joss.03262.238

[7] PEP 257 – Docstring Conventions | peps.python.org. 2022. URL: https://peps.pyth239

on.org/pep-0257/ (visited on 08/29/2022).240

[8] PlotID / plotID_debian · GitLab. 2022. URL: https://git.rwth-aachen.de/ploti241

d/plotid_debian (visited on 08/19/2022).242

[9] PyPI. PyPI · The Python Package Index. 2022. URL: https://pypi.org/ (visited on243

08/19/2022).244

[10] PyPI. TestPyPI · The Python Package Index. 2022. URL: https://test.pypi.org/245

(visited on 08/19/2022).246

[11] unittest — Unit testing framework — Python 3.10.6 documentation. 2022. URL: https:247

//docs.python.org/3/library/unittest.html (visited on 08/29/2022).248

[12] Welcome — Sphinx documentation. 2022. URL: https://www.sphinx-doc.org/en/m249

aster/ (visited on 08/29/2022).250

[13] Welcome to PlotID’s documentation! — plotID 0.1.2 documentation. 2022. URL: https:251

//plotid.pages.rwth-aachen.de/plotid_python/ (visited on 08/29/2022).252

ing.grid, 2022 8

https://github.com/PyCQA/flake8
https://github.com/PyCQA/flake8
https://github.com/PyCQA/flake8
https://github.com/PyCQA/pylint
https://github.com/PyCQA/pylint
https://github.com/PyCQA/pylint
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/user/project/pages/
https://docs.gitlab.com/ee/user/project/pages/
https://docs.gitlab.com/ee/user/project/pages/
https://git.rwth-aachen.de/plotid/plotid_python
https://git.rwth-aachen.de/plotid/plotid_python
https://git.rwth-aachen.de/plotid/plotid_python
https://doi.org/10.21105/joss.03262
https://doi.org/10.21105/joss.03262
https://peps.python.org/pep-0257/
https://peps.python.org/pep-0257/
https://peps.python.org/pep-0257/
https://git.rwth-aachen.de/plotid/plotid_debian
https://git.rwth-aachen.de/plotid/plotid_debian
https://git.rwth-aachen.de/plotid/plotid_debian
https://pypi.org/
https://test.pypi.org/
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/
https://plotid.pages.rwth-aachen.de/plotid_python/
https://plotid.pages.rwth-aachen.de/plotid_python/
https://plotid.pages.rwth-aachen.de/plotid_python/

	Statement of need
	Design
	Implementation
	Example script
	Core functions
	tagplot()
	ID
	tagging
	arguments

	publish()
	script
	data files
	arguments


	Distribution
	Source Code
	Python Package
	Debian Package

	Unit tests
	Documentation
	Conclusion
	Acknowledgements
	Roles and contributions

