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Abstract.

Research data management (RDM) in academic scientific environments increasingly enters

the focus as an important part of good scientific practice and as a topic with big potentials

for saving time and money. Nevertheless, there is a shortage of appropriate tools, which

fulfill the specific requirements in scientific research. We identified where the requirements in

science deviate from other fields and proposed a list of features which RDM software should

fulfill to become a viable option.

Finally we analyzed the open-source RDMS CaosDB for compatibility with the proposed

features and found that it fulfills the requirements.

1 Introduction1

Research units, from small research groups at universities to large research and development2

departments are increasingly confronted with the challenge to manage large amounts of data, data3

of high complexity[1], [2] and changing data structures[3], [4]. The necessary tasks for research4

data management include storage, findability and long-term accessibility for new generations of5

researchers and for new research questions[4]–[6].6

In spite of the advantages of implementing data management solutions[7], there is a lack of7

standard methods or even standard software so far for research data management, especially8

in the context of quickly evolving methods and research targets. In this article, we define the9

specific challenges for research data management (RDM) and propose features which suitable10

RDM software should have to (a) fulfill the practical needs and (b) be accepted by the potential11

users. We also demonstrate how the CaosDB1[8] toolkit is a viable approach to satisfy all the12

proposed requirements.13

1. Website: https://caosdb.org, source code: https://gitlab.com/caosdb/
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Figure 1: Schematic illustration of the scientific data lifecycle. Data can be obtained from every

step, and in most cases the relationship between data entities is just as relevant as the raw data.

While this example focuses on experimental and laboratory centered disciplines, comparative

lifecycles also exist for theoretical sciences and most fields in the humanities.

2 Challenges for research data management14

2.1 The scientific data lifecycle15

Data which accrues in scientific research is more than just experimental readings, field notes16

or interview recordings. In order to fully represent the research journey and eventually enable17

reproducible science, the data from every research step may become relevant and thus should be18

consistently managed.19

Figure 1 shows a schematic of different research steps during the research lifecycle, during which20

important data is generated. For full reproducibility, it is not sufficient however to simply store21

the data acquired at each point, but also to represent the semantic connections and make them22

searchable.23

In more detail, the most relevant data source in scientific research are:24

Prior publications An important part of good scientific practice (GSP) is to credit the influence25

of prior work, by the scientists themselves or third parties. Linking one’s work to previous26

publications and making these connections public also helps to assess reproducibility and27

may lead to fruitful data-reuse in unforeseen contexts.28

Ideas and SOPs The data here consists mostly of text documents which describe thoughts,29

hypotheses and planned standard operating procedures (SOPs). These documents fill the30

gap between previous work and the next round of data acquisitions, they often also work31

as a blueprint for the data acquisition phase.32

Lab data Environmental data, device settings, used SOPs and ingredients and other incidental33

data typically accrues during the course of experiments and was traditionally stored in paper34

laboratory notebooks. Currently, a lot of laboratories switch to electronic lab notebooks35

(ELNs) for the same purpose. While this data is often seen as second-class “metadata”,36
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we hold that since often conclusions can be drawn from it, it deserves the same handling37

as final instrument readings.38

Experimental results These are what is often considered the main data. For analysis, it mostly39

still needs parameters from at least the previous step, to filter for special conditions, to40

compare settings or to verify that values are compatible with standard literature.41

Numerical simulations Similarly to experimental results, data obtained from numerical meth-42

ods can not be interpreted without knowledge about used software and parameters, possibly43

hardware conditions and input from laboratories or third-party data sources. Since bit-exact44

reproducibility is possible in theory, all relevant settings should be stored unchanged.45

Data analysis When analyzing data from previous steps, storing not only the used programs,46

scripts and their parameters, but also the semantic connections enables later researchers47

to reconstruct which method was used, which assumptions were made and under which48

conditions the input data was gathered.49

Next publication Formally the end of the lifecycle, but of course also the beginning of many50

new ones, a publication contains a number of statements which are supported by data51

from previous steps. A comprehensive research RDM system (RDMS) could quickly52

summarize, for each plot in a publication, how the data was analyzed and acquired and53

under which assumptions the experimental setting was planned.54

This list focuses on experimental and laboratory centered disciplines, but of course in the55

humanities and theoretical sciences, there are equivalent steps which are equally important to56

preserve and link to each other.57

2.2 Specifics of scientific research data management58

Existing datamanagement systems (DMS) often still follow the paradigms of relational databases[9],59

[10]: There is a number of types for the data, with each type having a number of possible proper-60

ties. Each stored entity belongs to one type and has the properties defined by the type, occasionally61

it is also possible to leave a property empty or undefined. Searching or filtering in the stored data62

entities is possible by criteria which operate on the content of the properties and on the data types.63

These DMS have been widely successful in many areas such as finance, administration and64

high-tech industries[11], [12], but remain scarce in both academic and private sector research[12],65

[13].66

We hold that the main reasons are:67

Interoperability Scientists tend to work with their own custom-written software, which often68

requires files with data to be directly accessible to the OS via a – remote or local – file69

system. Many DMS store data files internally and make them available only via download.70

Also programmatic access (query, retrieve, update) to data DMS solutions via network71

APIs was uncommon until a few years ago, so that acquired data could not be instantly72

integrated in the DMS.73

Agility Traditional DMS require users to define a data model and stick to it. All data to be74

entered has to conform to the data model as it was defined. Research however is defined75
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by having undefined outcomes, the research questions, experimental setup or analysis76

methods change more often than not over the course of one investigation. A DMS based77

on rigid SQL databases thus may soon become a liability instead of an asset.78

Learning curve Research is impossible without the contribution of many participants, with79

different qualifications. With many DMS, it takes a lot of active learning before users can80

benefit from the provided data.81

Practical use Systems which only store data, but do not provide short-term advantages, have82

high entrance barriers everywhere. In academic research however, junior scientists with83

short-term contracts have little incentive to invest time and money in systems which only84

may pay out on longer timescales.85

3 Proposed features86

Under the assumptions from the previous sections, we propose the following core properties87

which an RDMS should have:88

Semantic linkage To fully map the real-world environment of data entities to the RDMS, it89

must be possible to link data sets with each other in a meaningful way. The default linking90

possibilities and properties of the data types in the RDMS form the data model.91

Deep search The RDMS should have easily accessible search options not only for property92

values of stored entities, but also for links to other entities and properties (and link) thereof.93

Flexible data model Researchers require an RDMS where the data model can be changed on94

the fly, without the need to migrate or discard existing data. When the data model is95

changed, for example due to new machines, protocols or evolving research questions, the96

existing data must remain valid and usable.97

Versioning Mistakes during data acquisition happen, and it must be possible to correct existing98

data sets. At the same time, this editing must be made transparent and the history of each99

data set must be kept for future inspection.100

File system integration For interaction with third-party programs, raw data files must be avail-101

able on standard file systems. Ideally the scientists’ workflows should remain unchanged102

by the RDMS.103

Open APIs For machine interaction with third-party programs, the RDM must have a well-104

documented API. In research contexts, these programs are often custom-written by scien-105

tists without explicit computer science background, so extensive documentation is very106

desirable.107

3.1 User acceptance108

Additionally, to increase the acceptance by potential users, we focus on two additional areas,109

automated data integration and low-threshold search options.110
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3.1.1 Automation111

Automation of repetitive data integration reduces error rates and frees users to concentrate on112

more challenging tasks. It is therefore desirable for an RDMS to have:113

Synchronization The RDMS should make it easy for its administrators to integrate existing114

data sources (for example databases or file systems with structured folder hierarchies)115

into the RDMS: The RDMS should be synchronized automatically with data from these116

sources, which makes these data available in a unified manner via the RDMS interface.117

Note that the RDMS can not solve the conceptual problem of a single source of truth when118

synchronizing data from different sources, but it can at least highlight potential conflicts119

and where they first occurred to administrators.120

ELN integration Research work in the lab is increasingly documented with electronic lab121

notebooks (ELNs)[14], [15], which allow to conveniently enter device and experimental122

settings in a semi-structured way. This data is usually critical in the analysis of acquired123

raw data from instruments, e.g. for searching specific data sets or filtering by parameters.124

There should be a possibility that the RDMS integrates the ELN data and presents it like125

data from other sources.126

Workflow representation While following one SOP, the laboratory workflow is often highly127

standardized, which makes it suitable for representation within the RDMS. The RDMS128

should support workflows with different states, which can only be switched in an admin-129

defined pattern. This simplifies the work for users, because they may e.g. only see the130

interfaces which are relevant for the current sample processing step.131

3.1.2 Simplified search132

To overcome initial reluctance by users, it is important to flatten the learning curve[16]. Besides133

obvious requirements such as user-friendly documentation, we hold that it is especially important134

to provide simplified search options. The simplified search in an RDMS should give some early135

sense of achievement, so users can understand that an RDMS will lead to a simplification of136

their work.137

4 CaosDB138

We hold that CaosDB[8], a flexible data management framework, fulfills the above-mentioned139

requirements. CaosDB was initially developed by one of our colleagues, Timm Fitschen, during140

his time at the Max Planck Institute for Dynamics and Self-Organization. In 2018, CaosDB was141

released under the AGPLv3 license on gitlab.com2. Since 2020, CaosDB has found increased142

adoption in multiple research facilities.143

4.1 Data Model144

CaosDB’s meta data model is shown schematically in Figure 2. The base type for everything145

is ENTITY, with the inheriting types PROPERTY (attributes of ENTITIES, may be list values and146

2. https://gitlab.com/caosdb
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Property
datatype :  {TEXT, INT, DOUBLE, BOOLEAN, REFERENCE>}
value : 

Entity

File
file :  
checksum : string

Record
*

*inherit from RecordType
*

inherit from

has Properties

Figure 2: The meta data model of CaosDB.

references to other ENTITIES), RECORDTYPE (templates for actual data sets) and RECORD. Actual147

data is typically stored in RECORDs, which inherit from one or more RECORDTYPEs and thus148

have all the PROPERTIES defined therein. The RECORDTYPEs may form a complex inheritance149

hierarchy themselves. FILE entities are similar to Records, but additionally are connected to150

files which may reside on conventional file systems or potentially in abstracted cloud storages.151

This approach to use files at their current locations instead of duplicating file content not only152

increases CaosDB’s scalability, but also lower the entrance barrier, since scientists can access153

the managed file in their traditional ways.154

Details of this meta data model in CaosDB are elaborated on in [8], but it should be clear now155

already that CaosDB provides the Semantic linkage feature.156

In CaosDB, the data model of the stored data refers to the RECORDTYPEs and their PROPERTIES,157

which together describe the pattern to which newly created data sets should conform. The data158

model in CaosDB can be modified at any time, but the changes only take effect for data to159

be inserted after this modification. Existing data is not affected and remains unchanged. This160

property fulfills the proposed Flexible data model feature.161

This possibility to completely change the data model, while not giving up on a general structure,162

places CaosDB between traditional SQL based relational databases and NoSQL3 approaches (c.f.163

Figure 3). While we described above why rigid SQL databases are not suited for use in dynamic164

research environments, giving no structure (the NoSQL paradigm) tends to lead to incoherent165

data which is hard to search4. A third approach, using graph databases to represent semantic166

information, has not found its way into general adoption to our knowledge, presumably because167

the query languages tend to become very unwieldy, compare the appendix 7 for an example.168

4.2 Architecture and Libraries169

CaosDB uses a client/server based architecture, as depicted in Figure 4a. CaosDB has is a REST170

API for simple access by traditional clients and a web interface for browsers, as well as a gRPC171

API which allows for more complex operations, such as atomic content manipulations. The172

existing client libraries5 and the open APIs provide the proposed Interoperability requirement.173

One particularly useful client library component is the CaosDB Crawler framework. This174

extensible framework simplifies the work to synchronize external data sources with CaosDB175

3. Popular examples for NoSQL database systems are CouchDB or MongoDB.

4. Missing structure in Data Lakes has lead to the tongue-in-cheek colloquialism “Data Swamp”.

5. A list of the available libraries with the respective source code repositories are given in the Appendix section 6.
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Figure 4: (a) CaosDB’s server-client architecture with client libraries and backend components.

Dotted elements are under development. (b) The crawler framework facilitates fast development of

custom data integration from a diversity of sources.

through a plugin system. The crawler workflow can be characterized as follows:176

1. The crawler periodically checks its data sources for new or changed data stores, such as177

file systems or the content of other databases.178

2. Each new data source is fed to a so-called CFood plugin for consumption. There is a179

choice of existing plugins, or administrators can write their own. The CFood plugin’s job180

is to build CaosDB entities from the consumed data and to specify Identifiables, which181

work as search patterns.182

3. The crawler checks for each Identifiable if a corresponding entity exists already in CaosDB.183

If there is no corresponding entity, the entity as returned by the CFood plugin is inserted184

into CaosDB. If there is already an existing entity, the Crawler will attempt to merge the185

existing with the new entity and notify the data curators in case of merge conflicts.186

This tool set provides the Synchronization requirement, and if ELNs are used as external data187

source, the ELN integration. Practical use of CaosDB crawler framework has previously been188
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demonstrated in [17] and ELN integration was implemented in [18].189

4.3 Additional features190

Deep search CaosDB offers a simple semantic query language, which borrows some semantics191

from SQL, but has a focus on usability for non-technical users. The CaosDB query192

language makes deep search easy with expressions like the following:193

FIND Analysis WITH quality_factor > 0.5194

AND WITH Sample WITH weight < 80g195

This convenient nesting of query expressions circumvents the JOIN operations from196

traditional SQL languages. A full documentation of CaosDB’s query language is available197

online6 or in CaosDB’s sources.198

Search templates CaosDB’s web interface provides customizable search templates which allow199

more advanced users to create their own templated queries, which can then be shared with200

novice users for simplified searches. In templated queries, users can insert custom strings201

into pre-defined locations of a search query, see Figure 5.202

Versioning When entities are modified in CaosDB, time and user of the change are recorded203

and CaosDB puts the previous version onto a history stack and amends the current version204

with link to the previous version. Over time, each entity may thus grow to a tree of linked205

versions, which can be retrieved via the web UI or programmatically through the APIs.206

This feature of CaosDB enables scientific research data management users to adhere to207

the principles of good scientific practice.208

State management In CaosDB, users may declare a state machine of states and allowed transi-209

tions. Users may then affix states to entities, and these states can then only be changed210

according to the rules of the state machine. In this way, users can implement a workflow211

representation which ensure that for example laboratory samples run through a specified212

list of preparation steps in order.213

Figure 5: A query template in CaosDB’s web UI. The user can enter a custom value into an input

field À and the template is then executed as a plain CaosDB query Á. Screenshot from

https://demo.indiscale.com.

6. https://docs.indiscale.com/caosdb-server/CaosDB-Query-Language.html
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4.4 Availability and documentation214

CaosDB is available on the public Git repository gitlab.com at https://gitlab.com/caosdb,215

a detailed list of CaosDB’s sub projects is given in the annex.216

For the interested public, there is a live demo server at https://demo.indiscale.com, hosted217

by IndiScale GmbH. This demo server is actually running LinkAhead, a commercially supported218

distribution of CaosDB.219

There are also Debian/Ubuntu packages to run precompiled LinkAhead/CaosDB for download220

at https://indiscale.com/download.221

CaosDB’s sub projects each have their own documentation in their source directories. The222

documentation is also available online at https://docs.indiscale.com.223

5 Conclusion224

We found that scientific research has specific requirements to data management: Interoperability,225

agility, adequate learning curves and early practical use. Most data management system do not226

satisfy these requirements, so we set up a specific list of features which a scientific RDMS should227

have. The open source research data management framework CaosDB has the specified features228

and thus fulfills the requirements for a scientific RDMS.229

Special attention has to be given to the aspect of synchronizing data from external sources (e.g.,230

crawled files, ELNs) and records in the RDMS. Different sources can (usually by some error)231

have conflicting data, or entries in the RDMS can be changed manually by users after their232

insertion. In our experience, this problem can not be solved in a general and purely technical way.233

Instead, best practices have to be implemented as to where possible errors should be corrected234

and whether some sources have precedence above each other. A RDMS like CaosDB, together235

with the crawler framework, can help administrators identify inconsistencies in the case of two or236

more data sources. Through versioning, it is visible who and when maybe changed data manually.237

How to optimize the help in recognizing potential conflicts, and in the end curate data both in238

the RDMS and in the external sources, is subject of the authors’ ongoing research.239

We hope that the open source license of CaosDB will inspire scientists to contribute to CaosDB.240

6 Appendix: List of CaosDB libraries241

The following libraries for programming client applications are publicly available:242

Python https://gitlab.com/caosdb/caosdb-pylib The Python client library can be243

used for third-party applications and is the foundation for several other libraries:244

Advanced Python tools https://gitlab.com/caosdb/caosdb-advanced-user-t245

oolsAdditional high-level tools, including a legacy implementation of the CaosDB246

crawler.247

Crawler https://gitlab.com/caosdb/caosdb-crawlerA new implementation of248

the CaosDB crawler.249

ing.grid, 2023 9

https://gitlab.com/caosdb
https://demo.indiscale.com
https://indiscale.com/download
https://docs.indiscale.com
https://gitlab.com/caosdb/caosdb-pylib
https://gitlab.com/caosdb/caosdb-advanced-user-tools
https://gitlab.com/caosdb/caosdb-advanced-user-tools
https://gitlab.com/caosdb/caosdb-advanced-user-tools
https://gitlab.com/caosdb/caosdb-crawler


RESEARCH ARTICLE

JavaScript https://gitlab.com/caosdb/caosdb-webui The JavaScript library is part of250

the web user interface component.251

Protobuf API https://gitlab.com/caosdb/caosdb-proto The gRPCAPI is defined via252

these protobuf files.253

C++ https://gitlab.com/caosdb/caosdb-cpplib The C++ library uses the gRPC API254

of CaosDB.255

Octave https://gitlab.com/caosdb/caosdb-octavelib The Octave/Matlab library is256

based upon the C++ library.257

Julia https://gitlab.com/caosdb/caosdb-julialib The Julia library also is based upon258

the C++ library.259

7 Appendix: Query language comparison260

As an example for nested queries in different query languages, we consider the search for female261

UK-based writers in a certain time period, whose given or family name starts with the letter262

M. We used the RDF query language SPARQL with Wikidata7 identifiers and CaosDB’s query263

language with fictional but plausible identifier names.264

The SPARQL query is as follows:265

1 SELECT DISTINCT ?item ?itemLabel ?givenName ?familyName WHERE {266

2 ?item wdt:P31 wd:Q5; # Any instance of a human.267

3 wdt:P27 wd:Q145; # United Kingdom268

4 wdt:P21 wd:Q6581072; # female269

5 wdt:P106 wd:Q36180; # writer270

6 wdt:P569 ?birthday;271

7 wdt:P570 ?diedon;272

8 wdt:P734 [rdfs:label ?familyName];273

9 wdt:P735 [rdfs:label ?givenName].274

10 FILTER(?birthday > "1870-01-01"^^xsd:dateTime275

11 && ?diedon < "1950-01-01"^^xsd:dateTime)276

12 FILTER(regex(?givenName, "M.*") || regex(?familyName, "M.*"))277

13 SERVICE wikibase:label { bd:serviceParam wikibase:language "en" }278

14 }279

In contrast, the CaosDB query looks like this:280

1 SELECT given_name, family_name FROM Writer281

2 WITH gender=f AND country=UK AND birthday > 1870 AND death < 1950282

3 AND (given_name LIKE "M*" OR family_name LIKE "M*")283

7. https://www.wikidata.org
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