PIA - A Concept for a Personal Information Assistant for Data Analysis and Machine Learning in industrial application

Christopher Schnur 1
Tanja Dorst 1
Kapil Deshmukh 1
Sarah Zimmer 2
Philipp Litzenburger 3
Tizian Schneider 1
Lennard Margies 2
Rainer Müller 2
Andreas Schütze 1

1. Lab for Measurement Technology, Saarland University, Saarbruecken.
2. ZeMA - Center for Mechatronics and Automation Technology gGmbH, Saarbruecken.
3. Chair of Assembly Systems, Saarland University, Saarbruecken.

Abstract. A high-quality database must be given to fully use the potential of artificial intelligence (AI). Especially in small and medium-sized companies with little experience with AI, the underlying database quality is often insufficient. This results in an increased manual effort to process the data before using AI. In this contribution, the authors developed a concept to enable inexperienced users to perform a first data analysis and record data with high quality. The concept comprises three modules: accessibility of (meta)data and knowledge, measurement and data planning, and data analysis. The concept was implemented as a front-end demonstrator on the example of an assembly station.

1 Introduction

Data and their analysis play a crucial role in research and science. In recent years, especially with steadily increasing computational power and the advances in artificial intelligence (AI), the importance of high-quality data has continued to grow. In this context, entire research fields and committees exclusively concern with improving data and their quality to maximize the potential of their use. However, using AI in the industry also offers enormous benefits for companies. For example, in the case of condition monitoring tasks, early detection of damages and wear down of machine parts and machines themselves can avoid unplanned machine downtime costs. Instead, maintenance can then be scheduled, and downtimes can thus be minimized. Especially small and medium-sized enterprises (SMEs) often have no dedicated department, skilled staff, or resources for analyzing their data and performing machine learning (ML) [1]. For these cases
and to retain the obtained knowledge, the concept “PIA – Personal Information Assistant for Data Analysis” has been developed. PIA is an open-source framework based on Angular 13.3.4, a platform for building mobile and desktop web applications, which runs locally on a server and can be accessed via the intranet. PIA is developed in accordance with the in research widely accepted FAIR (Findable, Accessible, Interoperable, and Reusable) data principles and aims to transfer and apply these principles in the industry as well [2].

The concept for PIA consists of three complementing modules that support users in different stages of the machine learning project:

- **Module M1**: Accessibility of data and knowledge
- **Module M2**: Measurement and data planning
- **Module M3**: Data analysis

Figure 1 shows the three modules (M1-M3) as pillars of PIA. Furthermore, the steps of a machine learning project are shown with the involved modules in their respective color.

In **M1 (Accessibility of data and knowledge)**, PIA provides an easy interface to access knowledge and data through the intranet. In addition, M1 allows users to link data and knowledge together to gain further insights into their manufacturing process and the acquired data. Here, two well-established methods in project management for lessons learned were combined and implemented as a knowledge base into PIA. Furthermore, an intuitive user interface (UI) enables users to find and access relevant (meta)data easily. In **M2 (Measurement and data planning)**, PIA provides a checklist that was developed by Schnur et al. in a previous project on brownfield assembly lines to increase data quality [3], [4]. A English version of the checklist can be found in [5]. **M3 (Data analysis)** is based on the automated ML toolbox of Dorst et al. and Schneider et al., which was developed in previous projects and successfully applied to industrial time series data [6]–[8].

This article’s contribution combines M1-M3 into an open-source concept for a personal information system that enables inexperienced users to perform a first data analysis project. It ensures the recordings of high-quality and “FAIR” data. Furthermore, a demonstrator for the concept...
has been developed as a front-end in Angular 13.3.4 and tested on an assembly line as use case, which assembles a specific product in several variants, focusing on bolting processes.

2 Theoretical background and Methodology

2.1 Data in industry

In their empirical study, Bauer et al. found that the lack of sufficient employees (with ML knowledge) and limited budget are part of the most frequent significant challenges for SMEs [1]. This can lead to rushed approaches which end in a low-quality database. However, an essential requirement for a successful application of AI in the industrial context is a solid database with high-quality data, e.g., from production and testing processes. The practical application of AI algorithms often fails due to

- Insufficient data quality due to missing or incomplete data annotation
- Incomplete data acquisition
- Problems linking measurement data to the corresponding manufactured products
- Lack of synchronization between different data acquisition systems

as shown in [9]. Furthermore, industrial data are typically acquired continuously without saving relevant metadata. In addition, this often leads to a brute force approach, which tries to use all acquired data. Large data sets are subsequently challenging to manage, and their use is computationally expensive. A knowledge-driven approach can efficiently use resources and increase the information density within the data, e.g., by reducing the amount of used sensor data due to process knowledge. By recording data in a targeted manner, redundancies can also be avoided. However, linking knowledge and data is a complex problem in many companies. The necessary process knowledge, especially in SMEs, is often limited to few employees and cannot be easily accessed by colleagues. Those specialists might also not be willing to share their knowledge in fear they lose their distinctiveness against other employees [10]. In the worst case, the (process) knowledge is lost if the specialist leaves the company.

2.2 Use Case: Assembly line

As use case for this contribution, an assembly line with two stations was chosen (fig. 2a) that produces a device holder (fig. 2b). In the first station, a robot picks up the individual parts of the device holder from a warehouse and places them on a workpiece carrier. The product is transported to station 2 by a belt conveyor for the next step. There, a worker assembles the two components by a bolting process. In addition, the device holder can be produced in another variant (fig. 2c). The use case is presented in more detail in [11].

The combination of two different stations with different processes and different degrees of automation, as well as the opportunity to produce a second variant of the device holder, make this assembly line a good use case for demonstrating the flexibility of PIA while keeping the complexity low (compared to more extensive assembly lines).
2.3 Module 1 - Accessibility of data and knowledge

Module 1 of PIA consists of two parts: a knowledge base and a UI to easily access (meta)data. M1 can be seen as a complementing component to internal knowledge repositories like company wikis [12]. Rowe et al. structure the formulation of lessons learned into the five subsequent steps: identify, document, analyze, store, and retrieve [13]. Moreover, they describe these steps in more detail and provide a template for lessons learned. The technical standard DOE-STD-7501-99 suggests that each lesson learned should contain the following five elements [14]:

- Understandable explanation of the lesson
- Context on how the lesson was learned
- Advantages of applying the lesson and potential future applications
- Contact information for further information
- Key data fields increase the findability

Additionally, Patton distinguishes lessons learned into lessons learned hypothesis and high-quality lessons learned [15]. While a lessons learned hypothesis is a lesson learned with one supporting evidence, high-quality lessons learned could be approved in multiple projects. To ensure the quality of the lessons learned, Patton further formulated ten questions in his paper for generating such high-quality lessons learned. Moreover, he recommended reviewing lessons learned periodically regarding their usefulness and sorting out obsolete lessons learned to maintain the high-quality. Figure 3 shows the approach proposed in this contribution. After analyzing a given use case, specific results were achieved. In a retrospective, the whole project is evaluated, and lessons learned are formulated according to the five steps of Rowe et al. [13]. If the lessons...
Figure 3: Formulation of high-quality lessons learned through combining the approaches of Rowe et al. and Patton [13], [15].

Learned (hypothesis) can be validated in further projects, they get added to the lessons learned register. The lessons learned register is reviewed regularly to ensure relevance and actuality.

2.4 Module 2 - Checklist for Measurement and Data planning

The Checklist - Measurement and data planning for machine learning in assembly of Schnur et al. enables the users of PIA to perform a machine learning project from the beginning to the end and record FAIR data with high quality [3]. It covers the following chapters:

- Preparation and project planning
- Measurement and data planning
- Data acquisition
- Data check and data cleansing
- Data evaluation and modeling
- Project completion

Each chapter begins with a short introduction, followed by checkpoints that guide the user. Here, two types of checkpoints exist, necessary and best-practice checkpoints. While the best-practice checkpoints are optional but highly recommended, the necessary checkpoints must be executed. Furthermore, the checklists provide tips and notes, as well as further literature suggestions. The checklist is based on a revised version of the Cross-Industry Standard Process for Data Mining (CRISP-DM). CRISP-DM divides data mining into the six non-sequential and independent phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment [16]. Therefore some parts of the checklist are iterative.
The checklist was initially published in German language on the file-sharing platform Zenodo and has been translated for integration into PIA to English, which also increases the accessibility and re-usability [4].

2.5 Module 3 - Data analysis

For analyzing the data, the existing automated ML toolbox for time-continuous data of Dorst et al. and Schneider et al. was used [6], [7]. This toolbox automatically tests different combinations of feature extraction and feature selection methods with linear discriminant analysis and Mahalanobis distance as the classifier. In this automated ML toolbox, five complementary feature extraction methods are combined with three feature selection methods, as shown with their corresponding literature in fig. 4. A 10-fold cross-validation automatically determines the best of the resulting 15 combinations [17], [18]. Users can therefore perform a first ML analysis by running five lines of code:

```matlab
addPaths; %Adds folders and subfolders to the path
load dataset.mat %Load data set
fulltoolbox = Factory.FullToolboxMultisens(); %Build object
fulltoolbox.train(data,target); %Train model with data and target as input
prediction = fulltoolbox.apply(data); %Apply trained model on data
```

Listing 1: Code to run the complete toolbox.

For further analysis, each method can be modified and also applied separately.

Figure 4: Algorithms of the automated ML Toolbox for classification with their corresponding literature (adapted from [6]).
3 Results

3.1 Environment and Structure of PIA

The Angular framework, an open-source single-page web application framework, has been chosen to demonstrate the concept of PIA. Angular 13.3.4. allows fast development of the demonstrator and gives the possibility that, once the demonstrator is hosted on the web, PIA can be easily accessed from any device within the intranet.

Figure 5 shows a schematic representation of the development environment of PIA. For simulating the user experience, the type-2 hypervisor Oracle VM VirtualBox (https://www.virtualbox.org/) from Oracle Corporation was used with Ubuntu as the guest operating system (OS). However, Angular can, in general, also be used on Microsoft Windows or Apple macOS.

Table 1 gives an overview of the used environments and table 2 of the used libraries, each with their corresponding sources.

<table>
<thead>
<tr>
<th>Value</th>
<th>Package</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Angular CLI</td>
<td>https://www.angular.io/</td>
</tr>
<tr>
<td>E3</td>
<td>Node Package Manager</td>
<td>https://www.npmjs.com/</td>
</tr>
</tbody>
</table>

Table 1: Overview of the used environments.

<table>
<thead>
<tr>
<th>Value</th>
<th>Package</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Angular Forms</td>
<td>https://www.npmjs.com/package/@angular/forms</td>
</tr>
<tr>
<td>L2</td>
<td>Angular Material</td>
<td>https://www.material.angular.io/</td>
</tr>
<tr>
<td>L3</td>
<td>Bootstrap</td>
<td>https://www.npmjs.com/package/bootstrap</td>
</tr>
<tr>
<td>L4</td>
<td>Charts js</td>
<td>https://www.npmjs.com/package/chart.js</td>
</tr>
<tr>
<td>L5</td>
<td>Flex Layout</td>
<td>https://www.npmjs.com/package/flex-layout</td>
</tr>
</tbody>
</table>

Table 2: Overview of the used libraries.

Besides Angular (E1), the environments Node JS (E2) and Node Package Manager (E3) are used. Angular’s primary architectural features are a hierarchy of components. Using this structure,
the various PIA functionalities have been separated into components for ease of use and reuse. Table 3 provides an overview with a short description of the components used in PIA. This structure also allows to easily add new components to the application without interfering with existing ones. The Angular Material library (L2) provides a consistent experience across the website. Specific dynamic components have also been made responsive using Bootstrap and Flex-Layout libraries (L3, L4). To make it easier for future developers to add new information to the website, data about each process has been saved in JSON format and then queried to display the relevant information in the UI. Users or developers can easily add more plants or tools to the application by editing the relevant JSON file, which will be dynamically displayed in the UI.

Figure 10 (Section A) shows the landing page of PIA. Over a menu, the user can navigate through the four menu points:

1. Plant
2. Knowledge base
3. Checklist
4. Data Analysis

3.2 Module 1 - Accessibility of data and knowledge

The implementation of M1 contains two parts, accessibility of data and metadata (menu-point: Plant) and a lessons learned register (Knowledge base). The plant module displays information, data, and metadata about various plants. Figure 6 shows an example flow-through of the use case in this study. After clicking on the Plant button, the available stations of the plant are displayed: Gripping Process and Bolting Process. After selecting a process (fig. 6, green box), the user can select between the following options:

• **Product**: Displays all available products with their variants containing further information like CAD files and technical drawings.

• **Resources**: All process resources are displayed with a picture (fig. 6, red box) and contain sub menus (fig. 6, blue box) with further information.

• **Measurements**: Data can be loaded as a CSV-file into PIA and plotted through the charts.js (L4) library.

• **Video**: A video of the process that shows the procedure and allows the user to develop a better understanding and link the data of a process. The video was embedded using the HTML iframe tag.

• **Sensors**: Contains an overview of all used sensors and their metadata (like sensor type, sensor position, sampling rate, etc.).

• **Shift book**: Displays the digital version of the shift book. Using the entries of the shift book can support the user, e.g., to explain outliers or shifts in data.

All information are contained in an array of JavaScript objects. Therefore, a new plant, station, or resource can be easily included by adding new objects to the array in the same format and
<table>
<thead>
<tr>
<th>Nr</th>
<th>Component Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>App Component</td>
<td>Root component of the application defined in the <code>app.module.ts</code> file and bootstrapped to the <code>main.ts</code> file to start the application. It acts as a container for all other components in the application.</td>
</tr>
<tr>
<td>C2</td>
<td>Menu</td>
<td>Provides a menu in the application to navigate through the various features. It appears on the left-hand side in the UI and has buttons for navigation through components.</td>
</tr>
<tr>
<td>C3</td>
<td>Plant</td>
<td>Implements the navigation to select the specific plant described in the application and provides buttons to navigate through the various embedded components.</td>
</tr>
<tr>
<td>C4</td>
<td>Plant Details</td>
<td>Implements the information about a specific plant and contains an array of objects, which saves information about the specific plant. Each object in the array contains properties that describe the plant. The main array of the plant has further arrays embedded inside, with similar properties describing the processes/stations inside a plant.</td>
</tr>
<tr>
<td>C5</td>
<td>Checklist</td>
<td>Implements the checklist with a navigation pane to move to different nodes inside the checklist. It has a JSON implementation that contains the description and other relevant information about each node in the checklist.</td>
</tr>
<tr>
<td>C6</td>
<td>Graph</td>
<td>Implements the plotting of graphs in the application with the Charts js library. It allows users to plot data from an uploaded CSV-file.</td>
</tr>
<tr>
<td>C7</td>
<td>Treeview</td>
<td>Implements the tree view of available or used processes. Furthermore, it implements the domain-specific knowledge of those processes or related tools in form of so-called cards.</td>
</tr>
<tr>
<td>C8</td>
<td>Info</td>
<td>Implements a card that displays specific text information regarding a particular process in the plant.</td>
</tr>
<tr>
<td>C9</td>
<td>Navigation</td>
<td>Header component, which implements the logo and name of the application</td>
</tr>
</tbody>
</table>

Table 3: Overview of the used components.

assigning it on the front-end. Here, Angular material cards (L2) are used to display further information, e.g., process resources. An example of the basic structure of the array of objects for a `Station` with one process which includes a robot and relevant metadata, e.g., technical data or technical drawings, is shown in list. 2 (Section B).

Further instances of the resources, e.g., a gripper for the robot, can be easily added by creating a new object with id, name, and paths corresponding to the documents and images in the assets folder and providing the relative paths to the corresponding documents. The new instance will automatically be displayed in the UI after recompiling. Furthermore, the button `Knowledge base` (fig. 6, blue box) contains specific knowledge about each resource.

The second part of the knowledge base contains the lessons learned register and a simple example of the link to general knowledge. The general knowledge was implemented illustratively as
a graphical representation of the assembly processes in the form of a tree. Here, the user can expand the tree by selecting the respective nodes to access the sub-nodes that describe the next steps of the process described in the parent node. The information component has been integrated with the nodes, which can provide further descriptive information about each node.

The implementation of the lessons learned register is shown in fig. 7. In the suggested version of a lessons learned register, each lesson learned is generated by the process shown in fig. 3 and grouped by their respective project step (chapter) of the checklist (fig. 7, blue box). After selecting a chapter, the lessons learned appear on the right-hand side (fig. 7, red box). Users can add criticism to existing lessons learned, lessons learned hypotheses, or additional files in the Comments section (fig. 7, green box). The Comments section is reviewed at regular intervals and, if necessary, transferred to the Lessons Learned Register.

3.3 Module 2 - Checklist for Measurement and Data planning

The checklist implementation uses the tree component of the Angular Material (L2) library, which allows to present hierarchical content as an expandable tree (fig. 8, blue box). Each node of this tree displays information about itself and additional tips or hints (fig. 8, red box). Furthermore, comments and files can be added to each checkpoint (fig. 8, green box). This helps employees that are new to the project to catch up and comprehend past steps. When the user ticks through all the sub-nodes, the primary process node is automatically ticked, indicating that all the sub-processes have been completed.

3.4 Module 3 - Data analysis

Since PIA is implemented as a front-end demonstrator with no back-end, the data analysis is carried out in MATLAB® Online™. Figure 9 shows the results of the data analysis with the ML toolbox for data of the example use case provided in [6]. The toolbox can be directly connected to GitHub into MATLAB® Online™ Figure 9. As shown in the blue box of fig. 9, the user can access other algorithms by clicking through the folder structure. After executing the code (fig. 9, green box), the user can plot the results (fig. 9, red box). For interpreting the results, the user can follow the subsequent steps of the checklist in M2 while using the knowledge, data, and metadata provided in M1.

![Figure 6: Schematic representation of the knowledge base with its single components.](image_url)
Figure 7: Implementation of the lessons learned register in PIA. Blue box: Chapters of the checklist. Red box: Lessons learned register. Green box: Comment section.

Figure 8: Implementation of the checklist in PIA. Blue box: Chapters of the checklist with their corresponding sub-chapters and checkboxes. Red box: Info- and Tip-boxes. Green box: The comment section.
4 Conclusion and Outlook

The personal information assistant PIA supports inexperienced users in performing an ML project and gaining further insights from data. For this, it consists of the three modules Accessibility of Data and Knowledge, Checklist for Measurement and Data Planning, and Data Analysis. Accessibility of Data and Knowledge allows the user to access relevant metadata and gain knowledge about the plant and processes through a lessons learned register. In its current version, the PIA demonstrator is implemented on a front-end in a virtual machine. Implementing an additional back-end, as well as hosting on a local server, can unfold the full potential of the concept. The implementation of PIA in Angular was a time-efficient way to demonstrate its benefits. However, users can decide if they would like to apply the concept in a different framework. Furthermore, the modules can be switched or customized to the specific needs of the users due to the open-source nature of this contribution and the PIA concept in general. In future research, the authors will further develop their concept and test it on other use cases.
A User interface of PIA

Figure 10: Landing page of PIA with its four menu-points (red box): Plant, Knowledge base, Checklist and Data Analysis.

B Code sample

```javascript
const Station = [
  {
    id: '1',
    title: 'Station 1',
    img: "path/station_1/picture_station_1.jpg",
    process_1: 'Process XY',
    resource_1:[
      {id: '1',
        name: 'Robot XY',
        technicalName: 'process 1 technical name',
        img:"path/station_1/Process_1/Robot_XY/Robot_XY.jpg",
        technicalData:"path/station_1/Process_1/Robot_XY/DataSheets/Robot_technical_details.pdf",
        manual:"path/station_1/Process_1/Robot_XY/DataSheets/Robot_manual.pdf",
        technicalDrawing:"path/station_1/Process_1/Robot_XY/DataSheets/Robot_technical_drawing.pdf"
      }
    ]
  }
]
```

Listing 2: Sample code for a station.
5 Acknowledgements

This work was funded by the European Regional Development Fund (ERDF) in the framework of the research projects within the framework of the research projects "Messtechnisch gestützte Montage" and "iTecPro – Erforschung und Entwicklung von innovativen Prozessen und Technologien für die Produktion der Zukunft". Future development is carried out in the project "NFDI4Ing – the National Research Data Infrastructure for Engineering Sciences", funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 442146713.

Furthermore, the authors thank Anne Blum and Dr.-Ing. Leonie Mende for their profound input during conceptualization and the Mittelstand 4.0-Kompetenzzentrum Saarbrücken for the deployment of a use case.

6 Roles and contributions

Christopher Schnur: Conceptualization, Writing & original draft
Tanja Dorst: Conceptualization, review & editing
Kapil Deshmukh: Programming & implementation
Sarah Zimmer: Conceptualization
Philipp Litzenburger: Conceptualization
Tizian Schneider: Methodology & review
Lennard Margies: Coordination
Rainer Müller: Concept & Coordination
Andreas Schütze: Coordination, Concept & review

References

