
�

Date Submitted:

2023-09-26

Licenses:

This article is licensed under: cb

Keywords:

Data management, HDF5, metadata,

data lifecycle, Python, database

Data availability:

Software availability:

Software can be found here

SOFTWARE DESCRIPTOR

preprints
h5RDMtoolbox - A Python Toolbox for FAIR Data

Management around HDF5

Matthias Probst� 1

Balazs Pritz� 1

1. Institute for Thermal Turbomachinery, Karlsruhe Institute of Technology, Karlsruhe.

Abstract. Sustainable data management is fundamental to efficient and successful scientific

research. The FAIR principles (Findable, Accessible, Interoperable and Reusable) have been

proven to be successful guidelines to enable comprehensible analysis, discovery and re-use.

Although the topic has recently gained increasing awareness in both academia and industry,

the engineering sciences in particular are lagging behind in managing the valuable asset of

data. While large collaborations and research facilities have already implemented metadata

strategies, smaller research groups and institutes are often missing a common strategy

due to heterogeneous and rapidly changing environments as well as missing capacity or

expertise. This paper presents an open source package called h5rdmtoolbox, written in

Python. It is a general-purpose interface to HDF5 files with the aim of helping to quickly

implement and maintain FAIR research data management throughout the data lifecycle,

using HDF5 as the core file format. One of the key features of the toolbox is the flexible,

high-level implementation of metadata standards, adaptable to the changing requirements of

projects, collaborations and environments, such as experimental or computational setups.

Implementation of interfaces to existing metadata schemas such as EngMeta or the CF

Conventions are possible and part of the comprehensive documentation. Other benefits of

the toolbox include a simplified interface to repository and database solutions.

1 Introduction1

Sustainable data management is fundamental in today’s data-driven world for several reasons.2

The amount of acquired data storage capacity has long ceased to be the limiting factor, while the3

computing power has increased greatly [1]. However, it is the ability to share data rather than4

generate it that defines success [2]. Furthermore, interdisciplinary and international collaborations5

have become essential in scientific research, and the main means of communication is based6

on digital documents [3]. A bottleneck in data exploration and processing, and therefore the7

general re-usability, is often the lack of auxiliary data, i.e. metadata. As a consequence, much8

time is spent on obtaining missing information. In some cases, this may require to re-conduct9

simulations and experiments. Effective data management practices hence hold the potential of10

saving time and money as well as increasing the value of data at the same time.11

Introducing a new data management concept can be challenging due to conflicting priorities,12

1

https://github.com/matthiasprobst/h5RDMtoolbox
https://orcid.org/0000-0001-8729-04821
https://orcid.org/0000-0001-9560-500X

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

expectations, and existing practices, as well as a lack of expertise or clear understanding of13

the benefits. Efficient use of standards is crucial for large and interdisciplinary collaborations.14

While those groups have developed domain-specific solutions, small research groups and PhD15

projects face challenges due to the use of multiple file formats, individual software solutions,16

personal preferences for storage and tools and established structures [4]. Common issues are17

the lack of time and resources to develop and implement a comprehensive and sustainable data18

management approach [5], which fulfills the requirements of the community and good scientific19

practice. Therefore, flexible and manageable solutions are needed to address this issue.20

Although the implementation of a common management system is beneficial in the long term,21

both financially [6] and in terms of efficiency, it disrupts structures and requires time, resources22

and cultural change. In academia, high staff turnover is an additional barrier, making it difficult23

to establish sustainable solutions. The decay of value develops as projects progress, ultimately24

finish and contracts expire. Consequently, the value of data will diminish over time. This issue25

is discussed in more detail in [7], [8]. In addition, a value decay can also be observed with26

increasing distance from the source of the data. The further away and therefore less involved27

a potential data user is, the more information may be missing, either due to restricted access28

or limited personal connections. Ensuring that data is preserved and being interpretable at all29

times can be achieved by adhering to the so-called FAIR principles, which stand for Findable,30

Accessible, Interoperable and Reusable and were first introduced in 2016 by [9]. Since their31

publication, the principles have become the cornerstones of many scientific communities and32

help to establish a sustainable data management [10]. Structured, highly descriptive information33

about data, known as metadata, is an integral part of it. Metadata provides context about its34

creation, purpose, use, processing history and the meaning of datasets. Consequently, it enables35

data to be discoverable, interoperable and reusable.36

This work is a contribution to assist small collaborative groups or communities and doctoral37

researchers with achieving a FAIR research data lifecycle by using the HDF5 (Hierarchical38

Data Format) file format. These groups are often faced with challenges such as heterogeneous39

file formats, the absence of standards within their fields, and limited expertise and resources40

for sustainable data management. The paper describes the scope and concepts of a Python41

package named h5rdmtoolbox and how it facilitates the implementation of FAIR principles using42

the HDF5 file format. Complementing this manuscript, an extensive online documentation is43

provided [11], leveraging Jupyter Notebooks [12]. This documentation offers in-depth insights44

and additional examples for immediate usage, serving as a comprehensive resource for users45

seeking detailed information and practical guidance.46

1.1 Outline of the paper47

Firstly, the paper outlines the package’s scope in comparison to existing and related works. This is48

followed by a section stating the concepts and architecture of the toolbox, describing the applied49

design principles and methods. Subsequently, the paper discusses concrete implementation50

details of all sub-packages and provides illustrative examples, referencing to their relevance51

within the research data lifecycle. Limitations of the presented package are stated before the52

paper concludes and summarizes the presented work. An outlook is given on future developments53

and potential enhancements.54

ing.grid, 2024 2

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

2 Scope and related work55

The primary aim of this toolbox is to offer comprehensive support throughout the lifecycle of56

research data (c.f. Figure 1) for small collaborative groups, communities, and doctoral researchers57

engaged in utilizing or contemplating the use of HDF5 files as their central file format. The file58

format is selected for various reasons, which are stated hereafter. A review of other file formats59

is beyond the scope of this work and literature should be referred to, for example [2], [8], [13].60

planning

co
ll
ec
ti
n
g

sh
arin

g

ex
pl
or
in
g

analyzing

Metadata

convention

Core File

HDF5

Standard Attribute

validation

HDF5-database

Zenodo

Metadata-aware

processing

HDF5 + xarray

ORCID

MongoDB

5
1

2

3

4

Figure 1: Illustration of the lifecycle of research data. Each phase is supported by the h5rdmtoolbox.

It starts by selecting a file format (HDF5) and a metadata concept (1) and performing quality

assurance measures during the selection and processing phase (2). Data is analyzed effectively for

scientific output in the next step (3). After publication, the availability of the data should be ensured

(4). (Meta)data quality finally is defined by its findability and consequently its re-usability (5) for

additional analysis at later time. The respective tools and solutions provided by the toolbox are

indicated by keywords around the lifecycle and explained in this work.

HDF5 features efficient storing of large multidimensional datasets together with metadata inde-61

pendent of the storage media, programming environment or operating system. The hierarchical62

structure of group and dataset objects (cf. Figure 2) resembles most engineering data. Attributes63

(key-value pairs) are means to store metadata and can be assigned to each object. The HDF5 file64

format is therefore regarded as self-explanatory. HDF5 finds application in numerous scientific65

domains, such as earth observation [14], high-energy physics [15] or fluid dynamics [16]. An66

in-depth presentation of the file format can be found in [17].67

Despite all the advantages of the file format, the organization of data management around HDF568

is left to the user [18]. This means that the choice of attribute names and values is not regulated by69

any standard. Findability, effective re-usability and automatic analysis, however, are dependent70

on standardization [19].71

The necessity for designing management solutions around the HDF5 file format is therefore72

evident. While existing solutions, such as proposed in [8], [14]–[16], [20], [21] address this need,73

ing.grid, 2024 3

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

Figure 2: Illustration of the hierarchical structure of an HDF file. The internal file structure is

organized like a file storage system, where folders are represented by the HDF group objects and

files by HDF dataset objects. Both objects can be associated with attributes, which provide the

metadata in order to make the objects interpretable.

they are often domain-specific, primarily focused on efficiently meeting the demands of specific74

communities rather than providing a generalized framework applicable to diverse problems. For75

example, formats like Nexus [15] or Photon-HDF5 [21] prescribe specific group and dataset76

organizations and metadata usage tailored to their respective data sources, such as neutron and77

X-ray data and molecule spectroscopy experiments, respectively. Other libraries like Zarr [20]78

address challenges associated with very large data (terabyte-scale) in the field of bioimaging79

with a particular emphasis on optimized cloud-based operations and the sharing of HDF5-based80

datasets. Finally, the issue of efficient database solutions for HDF5 are addressed in [1], [22].81

Besides the specificity of the solutions, adopting aforementioned solutions to new problems is82

very difficult due to their complexity and required expertise in the field. When data management83

solutions are needed for a concrete projects, it is crucial to minimize entry barriers. Currently, for84

HDF5, a general approach to manage data in all aspects during its lifecycle including metadata85

concepts, database solutions and practical interfaces are missing. The presented Python package86

h5rdmtoolbox seeks to bridge the gap between the advanced communities with domain-specific87

solutions and researchers trying to manage their data without established standards in place.88

Leveraging well-established Python packages, this toolbox offers high-level tools and interfaces89

within one package, that actively contribute to the promotion of FAIR data creation. As a whole,90

the package seeks to be a central resource of tools for scientists allowing them to manage their91

HDF5 data along the full data lifecycle from planning (1) via acquisition (2) and analysis to92

publication in data repositories (4) and sharing in databases (5). Figure 1 illustrates these stages93

and relates keywords to features of the toolbox.94

3 Concepts and architecture of the toolbox95

A key aspect of the toolbox lies in its adaptable implementation of metadata standards and96

interfaces to databases and repositories, allowing it to be relevant across many research fields97

with varying requirements. The challenge is to attain this flexibility without introducing excessive98

complexity, all while ensuring adherence to the FAIR principles. The toolbox achieves this99

through four principles:100

1. Relevant programming language: The choice of programming language significantly101

ing.grid, 2024 4

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

impacts the usability and acceptance of this toolbox, as well as data handling in general.102

Python is selected for this purpose due to its status as one of the most popular and widely103

used language in the scientific community. The high relevance of Python in the field104

allows the toolbox to address as many users as possible.105

2. One core file format: The Hierarchical Data Format (HDF5) [23] is selected as the core106

and general purpose file format. It is suitable for most scientific and engineering data107

sources and allows metadata to be stored with the raw data, making it a self-explanatory108

data store. The file format is open-source, well-supported by the HDF Group [23] and has109

a proven track record in many disciplines. Opting for a single file format as the foundation110

for a management toolbox is, therefore, not limiting. Prioritizing user-friendliness and111

widespread acceptance, the toolbox implements high-level interfaces to HDF5, extending112

the capabilities of the commonly used Python package h5py [24].113

3. Flexible Metadata Standardization: Enabling the storage of metadata alongside raw114

data necessitates its standardization (convention) to achieve discoverability. The toolbox115

introduces a simple and flexible definition of so-called standard attributes. Users can design116

their own convention, which provides feedback about the correctness of the (meta)data117

created. This ensures that users maintain the accuracy and completeness of their data and118

metadata.119

4. Extensibility: Adaptability extends beyond just metadata standards; it encompasses120

various aspects of the toolbox, including interfaces to databases and data repositories.121

Abstract classes establish communication rules between HDF5 and users, enabling the122

community to add new interfaces on top of the currently implemented ones and to make123

them available to others through the toolbox.124

In this work, a five-stage representation of the research data lifecycle is adopted, as illustrated125

in Figure 1. This framework forms the basis for the toolbox’s architectural design, aligning its126

functionalities with the key stages of the data lifecycle. Consequently, the toolbox is structured127

into five sub-packages, as depicted in Figure 3. The numerical assignments in the figure directly128

correlate with the roles of these sub-packages in the stages of the data lifecycle (c.f. Figure 1).129

This structured approach enhances the toolbox’s utility by providing specialized tools for each130

phase of the research data lifecycle.131

The components of the sub-packages are designed in a manner that ensures independence from132

each other, facilitating individual development and modularity. One exception is made to the133

sub-packages wrapper and convention. The following sections will highlight the features and134

implementations of the sub-packages, as well as their importance within the data lifecycle.135

3.1 layout136

Research projects start with a scientific question and a data management plan (DMP) [25]. The137

DMP outlines how data is handled during and after the project. One important aspect is the138

agreement on common exchange formats (in this work HDF5). It has a significant impact on139

the realization of a FAIR data cycle as a whole, especially, when it comes to sharing data [20].140

Besides a common vocabulary, the internal structure (layout) of the file is important. It is the141

ing.grid, 2024 5

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

h5rdmtoolbox

wrapperconventiondatabase layout repository

uses

1 1
1

2 3
3

4
4

5 5
5

2
2

Figure 3: Organization of the sub-packages in the presented package. The core module is called

wrapper, which adds useful functionality for the user when interacting with HDF5 files. It uses the

convention module to manage metadata requirements when creating and reading data. The other

modules are not dependent on each other and must be imported on demand. The numbers indicate

their main areas of application within the different stages of the data lifecycle, as shown in Figure 1.

basis for reliable processing and automated analysis. The hierarchical structure of HDF5 files142

allows various strategies to organize data and therefore must be regulated by the project data143

manager.144

The sub-package layout implements the class Layout, which is a collection of specifications.145

Each specification is a query that is executed during the validation of a file. The rationale behind146

this approach is that all elements, that are expected to be present in a file, must be identifiable.147

The code in Listing 1 illustrates the definition of a Layout: First, the layout object is created.148

Then two specifications are added by providing a query function and query parameters (using149

pseudocode for simplicity). The initial parameter may be any Python function that is capable150

of accepting the query parameters and returning a list of identified HDF5 objects. As part of151

the toolbox and its documentation [11], a database solution is provided within the sub-package152

database.153

1 from h5rdmtoolbox import layout

2 lay = layout.Layout()

3 spec1 = lay.add(func=query_function,

4 query=<has dataset with name 'x_velocity'>)

5 spec2 = lay.add(func=query_function,

6 query=<datasets have the attribute 'units'>)

7 lay.validate("filename.hdf")

Listing 1: Code example for defining a Layout to validate HDF5 files based on query statements.

The queries are written in pseudocode for enhanced readability.

The Layout concept should be part of every phase in the data lifecycle. Once the definition has154

been established during the planning phase (1), it is advisable to validate the integrity of the file155

at each stage. This is because the content may have been altered in the meantime, for example,156

the agreed internal setup or used attributes may have been modified. Verifying that the layout157

remains consistent with the intended definition is essential for the generation of reliable data and158

complete files. Avoiding missing information through careful definition of the file content in159

combination with regular checks is the basis of FAIR data.160

ing.grid, 2024 6

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

3.2 convention161

In addition to a robust HDF5 layout, the provision of meaningful and comprehensive metadata for162

HDF5 datasets and groups is of the utmost importance. This ensures that files are interpretable by163

both humans and machines. During the planning phase (1), a selection of relevant attributes for164

the investigated problem is important. The quality of these attributes significantly influences the165

findability of data within an HDF5 file, as well as the reusability and interoperability aspects of166

FAIR data in general. The term ”quality” here refers to whether attributes are linked to existing167

metadata concepts that can be referenced to persistent sources. Examples include controlled168

vocabularies such as the CF Convention [19], metadata schemas like EngMeta [26], or ontologies169

like Metadata4ing [27]. These sources provide standardized and well-defined terms that enhance170

the clarity and consistency of metadata, contributing to improved data discoverability and reuse.171

Documentation for the toolbox [11] includes examples showcasing the possible utilization of172

these standards within the toolbox. The concept of Conventions is explained in the following.173

The h5rdmtoolbox implements the concept of so-called standard attributes as part of aConvention174

object to validate relevant metadata, i.e. HDF5 attributes, during runtime as the user writes175

data to the file. The implementation is based on the Python package pydantic and hence reuses176

successful existing solutions. It should be noted, that this approach of attribute validation partly177

overlaps with the concept of Layouts. However, layout checks are performed after the file has178

been written and therefore allows for more complex requirements, that have been defined by179

stakeholders (e.g. dependency checks in the form of ”if a dataset is named X then it should be180

1D and of data type float32”). The strength of using a Convention is, that it allows checks during181

data creation with immediate feedback. The focus is on usage of specific attributes and their182

correct usage. It is therefore especially helpful during software development, data manipulation183

and conversion.184

convert

getreport

reject

analyzing, ...

data generation

create, manage &

Convention

stakeholders publish

planning

collecting

hdf5

Validator

Figure 4: Workflow of collecting and converting the source data. The Convention validates the

created HDF5 files and serves as a feedback loop to the file creators or the software developers

writing the conversion scripts. Only validated files can be further processed or published.

Figure 4 illustrates a common workflow, which makes use of this concept. The stakeholders185

of a project define and share a set of standardized attributes of type StandardAttribute within186

a Convention. The latter is saved in a YAML file and is shared across all users, which are187

ing.grid, 2024 7

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

directly working with HDF5 files. By integrating the Convention into their workflows through188

the h5rdmtoolbox, they obtain direct feedback through a validation mechanism. As a result, the189

quality in terms of reliable and comprehensive data description through attributes is ensured and190

basis for the FAIRness of HDF5 file is set.191

As shown in the class diagram in Figure 5, a Convention object takes a list of StandardAttribute192

objects. The important properties of a StandardAttribute are validator and target_method. The193

target_method assigns the object to a method of the h5py package (other options are __init__ or194

create_group) and the validator defines how the attribute is validated during assignment.195

StandardAttribute

+ name

N

+ validator

+ validate(value, ...)

+ description

Convention

+ add_standard_attribute(std: StandardAttribute)

+ register()

+ name

+ validate(file_or_filename)

+ from_yaml(yaml_filename)

+ from_json(json_filename)

+ contact

+ registered_standard_attributes

H5tbxConvention

...

name: ”h5tbx”

contact: ”0000-0001-8729-0482”

registered_standard_attributes = [...]

+ target_method

+ default_value

UnitAttribute <i><i>

name: ”units”

validator: ”$units”

validate(value, ...)

description: ”Physical unit”

target_method: ”create_dataset”

defaut_value: ”$empty”

Figure 5: Class diagram of components Convention and StandardAttribute. The instances

”H5tbxConvention” and ”UnitAttribute” are used in Listing 2.

Aminimal example of the two instances shown in Figure 5 is written in code in Listing 2. Note,196

that the parameter ”units” in the function call is not part of the underlying h5py package but197

gets dynamically added by enabling the Convention. It is also noteworthy that by setting the198

keyword ”$empty” as the default value, the attribute becomes obligatory. For HDF5 datasets,199

this is in fact a reasonable choice, as generally physical data is written to datasets, which require200

a physical unit.201

As indicated in the class diagram, Conventions can also be defined in files (JSON or YAML),202

which allows sharing the Convention via data repositories or databases with all involved stake-203

holders. By enabling the project Convention during file manipulating, users receive immediate204

feedback on the validity of the used standardized attributes (c.f. Figure 4). This is a difference to205

the concept of Layouts, which are static validators. For further information and examples about206

the implementation details, pre-implemented validators as well as the user-defined creation of207

ing.grid, 2024 8

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

1 import h5rdmtoolbox as h5tbx

2 h5tbx.use("h5tbx")

3 with h5tbx.File(myfile.hdf, "r+") as h5:

4 h5.create_dataset("ds", data=4, units="m/s")

5

Listing 2: Minimal example of using a Convention. By enabling the ”h5tbx”, the standard attribute

”units” becomes obligatory in the method create_dataset. The value of ”units” is validated and

automatically added to the newly created dataset or an error is raised.

new ones, please refer to the documentation [11], as this information exceeds the scope of this208

paper.209

The documentation provides extensive details, practical examples, and guidance to support users210

in utilizing and customizing Conventions and validators within the h5rdmtoolbox.211

3.3 wrapper212

The package wrapper plays a central role within the toolbox by implementing a thin layer213

around the HDF5 Python library h5py. Besides user-friendly high-level methods for interactive214

representation of the file content in Jupyter Notebooks or helper methods for special attributes215

or datasets, the wrapper package is responsible for216

• integration of the Convention concept into the h5py framework and217

• metadata-aware exchange of data through xarray object [28].218

The integration of the xarray package into the toolbox provides several advantages. As previously219

highlighted, one of the reasons for selecting HDF5 is its compatibility with the multidimension-220

ality of many scientific and engineering datasets, allowing the storage of attributes alongside221

the data. However, using numpy arrays as part of the h5py package results in the loss of two222

important sets of information. Firstly, numpy arrays can only represent array data, discarding223

attributes associated with the data. Secondly, the axis of a multidimensional array can only224

be addressed by their indices (0, 1, etc.), potentially losing references to other datasets in the225

HDF5 format (a concept known as dimension scales in h5py [24]). This limitation hinders the226

interpretation of values and their context.227

The xarray package addresses these limitations by wrapping its functionality around numpy228

arrays [28]. It enables the association of attributes to the values and allows the labeling of the229

axes in multidimensional arrays. This structure closely aligns with the HDF5 dataset model. By230

returning ”metadata-aware” xarray objects, the toolbox ensures that provenance information is231

added, enhancing the intuitiveness and reliability of data processing. The auxiliary information is232

consistently preserved during data utilization for visualization or other post-processing steps, as233

depicted in Figure 6. It is noteworthy, that xarray has a strong plotting utility, that automatically234

extracts information from the data object, incorporating it into the labels and title of the plot.235

The synergies between HDF5 and xarray, resulting in benefits like concise code and interactive236

visualization of metadata, are best illustrated through practical examples. To gain a deeper237

understanding and explore enhanced workflows and data operations, it is recommended to238

ing.grid, 2024 9

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

consult the online documentation of the h5rdmtoolbox [11]. For the sake of completeness, a239

short example is given in the following.240

The code example in Listing 3 demonstrates the workflow as illustrated in Figure 6. A subset of241

the dataset ”data” is selected based on the coordinates. The return value is a xarray.DataArray on242

which the rolling mean is computed. The result is finally plotted on the screen. With only a few243

lines of code, the user obtains quick insight into the dataset while maintaining comprehensibility244

and traceability. Another notable feature wrapped around the core h5py package is the ability245

to encode the semantics of HDF5 data using the concept of Resource Description Framework246

(RDF) [29]. Similar to the attribute manager interface (attrs) of h5py, the toolbox uses an RDF247

manager (rdf). It enables the user to enrich HDF5 attributes, datasets and groups with formal248

metadata using semantic RDF triples (subject - predicate - object). More information on the249

technology can be found in [30].250

1 import h5rdmtoolbox as h5tbx

2 with h5tbx.File(filename) as h5:

3 # select and read selected data and store in variable:

4 d = h5["data"].sel(x=4.3, y=0.2, method="nearest")

5

6 # process (compute rolling mean over time with window size 3):

7 drm = d.rolling(time=3).mean()

8

9 # visualize the result:

10 drm.plot()

Listing 3: Example of data extraction using the toolbox. The returned value is an xarray.DataArray

containing comprehensive metadata from the underlying HDF5 dataset. This facilitates transparent

data operations and minimizes potential errors. Additionaly, many operations can be reduced to one

line of code, which makes scripts concise and traceable.

Listing 4 outlines a minimal example how metadata of a person can be precisely described using251

Internationalized Resource Identifiers (IRI). While the choice of dataset, group and attribute252

names is often based on personal preferences, RDF triples add meaning to the group ”contact”253

write
x

y

data (10, 5, 7)

xarray.DataArray

attributes
include

/grp

y (5,)

x (7,)

time (10,)

units: s

File Result/Plot

read

process

x[m]

y
[m
m
]

time = 3.4 [s]

visualize

tim
e

Figure 6: The h5RDMtoolbox makes use of the xarray features. Instead of numpy arrays,

xarray.DataArray objects are returned, which allows carrying the dimension references and attributes

and results in comprehensive data processing and visualization.

ing.grid, 2024 10

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

and its attributes. The assignment of globally unique and persistent identifiers plays a pivotal254

role in the fulfillment of the FAIR principles. Like this, metadata becomes interpretable by both255

humans and machines. The method dump_jsonld extracts the semantic information, which may256

be saved in a JSON-LD file or stored in a database for further usage. The internal HDF5 structure257

can also be described using RDF, but is disabled here (structural=False) to obtain a compact258

output. The documentation may be consulted for more details at this point.259

1 import h5rdmtoolbox as h5tbx

2

3 with h5tbx.File() as h5:

4 g = h5.create_group("contact")

5 g.attrs["name"] = "Probst"

6 g.attrs["oid"] = "0000-0001-8729-0482"

7

8 # enrich with RDF metadata:

9 g.rdf.type = "http://xmlns.com/foaf/0.1/Person"

10 g.rdf.subject = "https://orcid.org/0000-0001-8729-0482"

11 g.rdf.predicate["name"] = "http://xmlns.com/foaf/0.1/lastName"

12 g.rdf.predicate["oid"] = "http://w3id.org/nfdi4ing/metadata4ing#

13 orcidId"

14

15 print(h5.dump_jsonld(structural=False, indent=2, resolve_keys=True))

16

17 # output:

18 # {

19 # "@context": {

20 # "foaf": "http://xmlns.com/foaf/0.1/",

21 # "m4i": "http://w3id.org/nfdi4ing/metadata4ing#"

22 # },

23 # "@id": "https://orcid.org/0000-0001-8729-0482",

24 # "@type": "foaf:Person",

25 # "foaf:lastName": "Probst",

26 # "m4i:orcidId": "0000-0001-8729-0482"

27 # }

Listing 4: Simple example code highlighting the semantic enrichment of HDF5 data using RDF

triples and globally unique identifiers from existing ontologies, here foaf [31] or m4i [32]. This

approach ensures that attributes and groups are assigned a concise and clear meaning, which can

be interpreted by machines and is therefore independent of the author’s or project’s context

3.4 repository260

How data is shared depends on the scope and restrictions of the project (phase 4 in the lifecycle).261

Most use cases will, at least for some time, store data locally for internal use and later upload it262

to a data repository. The sub-package repository implements an abstract interface class to data263

repositories and their files. At the time of writing, one concrete realization of such an interface264

is implemented for Zenodo [33]. It is one of the most popular repositories in the scientific265

community to publish scientific data with open-access. Interfaces to other platforms are planned266

to be added in the future, such as Figshare [34] for example. The design of the repository267

sub-package explicitly promotes this by using an object-oriented design: An abstract base class268

ing.grid, 2024 11

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

RepositoryInterface

ZenodoRecord Figshare

RepositoryFile

Figure 7: The architecture of the repository sub-package implements the basic interface (abstract

class RepositoryInterface) to data repositories. Through One concrete implementation is provided

for Zenodo (ZenodoRecord). The interface to files within the repository is realized through

RepositoryFile, clearly defining common properties and download functionalities across all

repositories. Other popular platforms (e.g. Figshare) could be added by code contributors to the

h5rdmtoolbox. The gray components are abstract classes, white boxes indicate concrete

implementations, and the dashed lines indicate potential extensions in future.

RepositoryInterface defines mandatory properties and methods for the user-platform interaction,269

as depicted in Figure 7. Moreover, the interaction of users with files within a repository is270

prescribed by RepositoryFile. The chosen design streamlines and simplifies the data exchange271

with repositories (see Listing 5).272

The repository interface class implements the method upload_file, which allows to automatically273

mapmetadata to a secondary file, which is uploaded alongside the original file (see Figure 8). This274

has the following reasoning: Large files are expensive to download in terms of time, especially if275

it turns out, that the data is not matching the expectations of a user. As data repositories typically276

only offer descriptive information regarding the type of data publication (e.g., creator, version,277

time, keywords, license, etc.), the content of large files can only be examined after they have278

been downloaded.279

1 from h5rdmtoolbox.repository import zenodo

2 from h5rdmtoolbox.wrapper import hdf2jsonld

3

4 repo = zenodo.ZenodoRecord(None, sandbox=True) # new testing deposit

5 repo.upload_file("my_file.hdf", metamapper=hdf2jsonld, skipND=1)

6

7 meta_filename = repo.files["my_file.jsonld"].download()

8 # ... review JSON-LD file and eventually download the HDF5 file

Listing 5: Example code demonstrating the upload process of HDF5 files. The metamapper

parameter expects a function, which extracts metadata information from the HDF5 file and uploads it

alongside the HDF5 file. The default function as used in the example uses hdf2json, which is a

built-in function. It extracts the structure in the json-ld format. The parameter skipND is specific to

hdf2json and is automatically passed to it.

Especially large HDF5 files may contain much and complex information, not only based on280

attributes but also from the internal structure and dataset properties. The automatic extraction of281

metadata is implemented for HDF5 files only as part of the toolbox and uses RDF as a universal282

metadata description (see e.g. Listing 4). If the user wish to use custom mappings for HDF5 files283

or other file formats before their upload, the custom function should be passed to the argument284

ing.grid, 2024 12

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

metamapper. In the example shown in Listing 5, an HDF5 file is uploaded using the built-in285

function hdf2jsonld from the wrapper. It writes the metadata into a JSON file using the JSON-LD286

format, resulting in a small text file. Another user exploring the repository may download the287

JSON file first, which allows investigating the HDF5 metadata content, and then eventually288

download the potentially large HDF5 file.289

upload_file(...)

metamapper=hdf2meta

repository

Figure 8: The workflow of uploading data to a repository involves a so-called metamapper function,

which extracts metadata from and about the file (attributes and structure) and writes it into a

JSON-LD file. This is done automatically for HDF5 files, unless the user provides a custom function

(here representatively indicated with hdf2meta, resulting in an additional JSON file). Both files are

uploaded to the repository. This procedure is especially helpful for large HDF5 files. Interested users

may first download the metadata file and inspect the content before downloading the large file.

3.5 database290

Exploring HDF5 data and hence an efficient re-use requires a query mechanism for the files.291

The toolbox implements two ways:292

1. Using HDF5 as a database inside a file system.293

2. Mapping HDF5 to the NoSQL database MongoDB [35].294

Figure 9 shows the workflows for both options. The simplest solution uses an HDF5 file itself295

as a database and multiple files as multiple databases respectively. For the case of one file296

the user calls the database interface class FileDB, for multiple files FilesDB. A query call is297

constructed similar to the one using a dedicated database solution, which is MongoDB. Each298

search will recursively walk through one or multiple HDF5 files. Yet simple, this approach may299

be inefficient for many or large HDF5 files.300

A second and more performant solution maps the attributes to a MongoDB database. A query301

on MongoDB is very efficient and allows more complex queries as compared to the current302

implementation of FileDB and FilesDB. Depending on the amount of files and their size, the303

extraction of metadata and writing to the database may be time-consuming. However, frequent304

query calls are processed very quickly, resulting in a faster overall solution. It should be noted,305

that MongoDB is used as a metadata database, which requires keeping the original HDF5 files.306

If no further queries are planned, the database can be deleted again.307

ing.grid, 2024 13

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

file system

query

</></>

</></>

File(s)DB

MongoDB

(meta)data

query

(meta)data

with HDF5 files

HDF5DBInterface ExtHDF5DBInterface

sequentially

open file(s)

map metadata

to database

Figure 9: Workflow of the two provided database solutions: The simplest solution using FileDB or

FilesDB allows the user to perform queries directly on one or many HDF5 files, respectively. The

requests are sequentially executed and scan the complete files. A more efficient solution maps the

metadata to a NoSQL database (MongoDB). Here, query requests can be more complex and are

more efficient but requires a prior mapping process, which the toolbox provides. Both

implementations are inherited from HDF5DBInterface ensuring a common interface between user

and database solution.

Both approaches are implemented in the toolbox based on the abstract class HDF5DBInterface.308

This class defines two query methods (find and find_one). For implementations using external309

databases like MongoDB, inserting methods are required as defined in ExtHDF5DBInterface.310

The utilization of these classes defines the interface between the database and the users, and311

also serves as a foundation for future implementations of other third-party databases. The used312

syntax for the queries, the capabilities of the present solutions as well as the return data object of313

query results are outlined in detail in the documentation.314

4 Documentation315

The h5rdmtoolbox is versioned via a GitHub repository and can be installed using the Python316

package installer (pip). At the time of writing, the package version is v1.4.0 and an extensive317

documentation is automatically created and published online [11]. It provides an overview of318

features that are not included in this paper or are only briefly discussed.319

The documentation website is generated based on Jupyter Notebooks. On the one hand, this320

results in a practical documentation, showing code and explanations together. On the other hand,321

it allows users to reuse the code from the documentation for immediate application by simply322

copying the code snippets. As Jupyter Notebooks become more popular [12], [36], the option to323

download the full Notebooks will be another efficient option for most users who are new to the324

toolbox.325

5 Limitations326

As outlined before, this package serves as a general toolbox, introducing a management layer327

around HDF5 files. Therefore, its strength lies in the metadata organization and user-friendly328

interaction with HDF5 files, rather than high-performance data processing. This means, that329

ing.grid, 2024 14

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

during dataset creation and reading, additional processing is needed to validate the metadata330

usage. The process of actually writing and reading the file is dependent on the underlying331

package, which is h5py. For large datasets, however, the overhead is negligible and the write or332

read process is dominating. No significant time differences between h5py and h5rdmtoolbox333

are observed. The same accounts for the performance of working with dataset values. They334

are provided as xarray objects. Again, generating them based on the numpy array and other335

information from the HDF5 file requires some time. After this, the performance is dependent on336

the xarray package.337

The chosen design principles introduce two inherent limitations. Firstly, the implementation338

of the package in Python inherently limits its compatibility for users of other programming339

languages such as C++, Java or Matlab for instance. The widespread popularity of Python in the340

scientific community justifies the choice. While a similar implementation in other languages is341

theoretically possible, such an extension is beyond the scope of this work. Secondly, the selection342

of HDF5 as the core scientific file format imposes an inherent limitation. Not all scientific or343

engineering data may be well-suited for HDF5 files. While HDF5 is versatile, some specialized344

data types or structures may find more suitable alternatives outside the HDF5 format.345

Finally, it is essential to note that the number of interfaces to databases and repositories is346

currently limited. As of the current writing, the database sub-package includes implementations347

for MongoDB and a query solution using HDF5 itself. In the repository sub-package, only348

Zenodo is provided. Nevertheless, the toolbox is designed to permit and explicitly encourages349

further extensions by the community. This open architecture invites collaborative contributions350

to expand the range of interfaces and integrations with databases and repositories based on the351

evolving needs and preferences of users.352

6 Conclusion and Outlook353

The Python package h5rdmtoolbox has been introduced, which is designed to support small354

collaborative groups, communities, and doctoral researchers who use or consider using HDF5355

files as their central file format. HDF5 is chosen for its self-descriptive capabilities and versatility356

in various scientific domains. However, the management of metadata and internal organization357

of datasets and groups, as well as facilitating interoperability with other frameworks, is left358

to the users. The toolbox aims to enhance the FAIR principles of data by providing general,359

comprehensive tools for managing HDF5 files throughout their lifecycle. While solutions360

exist, that address management needs, they tend to be domain-specific and lack a generalized361

framework applicable to diverse problems. Some solutions may only focus on specific aspects of362

the data lifecycle, such as databases. In contrast, the presented toolbox adopts a broad approach,363

providing tools that enable users to create tailored management solutions for HDF5 files based on364

their specific scientific context. Rather than prescribing a singular solution, the toolbox fills the365

gap between well-established solutions utilized by large scientific communities and the absence366

of standards for individual researchers. By offering a Python package equipped with high-level367

tools and interfaces for HDF5 data management, the toolbox improves the FAIRness of HDF5368

files for scientists.369

With user-friendliness and low entry barriers in mind, the toolbox uses popular Python packages370

ing.grid, 2024 15

SOFTWARE DESCRIPTOR

like xarray and pydantic as dependencies and adopts syntax into newly programmed solutions371

(e.g. query within HDF5 files is adopted from MongoDB). However, the toolbox is missing372

graphical user interfaces. This would strongly improve the usability and will lower the entry373

level, especially for less experienced programmers. Future work should set the focus on the374

design of Conventions and Layouts, as this constitutes the bases of successful data management.375

The toolbox has been tested in and improved through various scientific projects with a focus376

on fluid mechanics. However, further testing in other domains is required. In addition to377

the implemented unit tests, practical testing in various applications is necessary to identify378

further needs, weaknesses and thus elaborate potential for improvements. Application to various379

problems and scientific disciplines are planned and feedback from researchers will need to380

incorporate into the toolbox. This will extend capabilities, improve the code and allow it to be381

adapted to the needs of users. Current concrete use cases investigate fluid problems, such as382

computational fluid dynamics simulations and particle image velocity measurements. Lessons383

learned from these areas will be incorporated into future publications, while further examples384

and guidelines will be continuously added to the online documentation [11].385

7 Acknowledgements386

The software was developed in-house without any external funding and no conflicts of interest387

are declared. The authors would like to thank all users, who have been testing the toolbox so far388

and provided helpful feedback. A special thanks belongs to Lucas Büttner for the helpful testing389

and feedback at the beginning of the project.390

8 Roles and contributions391

Matthias Probst: Conceptualization, Writing, Software Development – original draft392

Balazs Pritz: Project administration, Formal Analysis, Writing - review & editing393

References394

[1] Y. Wang, Y. Su, and G. Agrawal, “Supporting a Light-Weight Data Management Layer395

over HDF5,” in 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and396

Grid Computing, IEEE, 2013, pp. 335–342. DOI: 10.1109/CCGrid.2013.9.397

[2] J. Georgieva, V. Gancheva, and M. Goranova, “Scientific Data Formats,” in Proceedings398

of the 9th WSEAS International Conference on Applied Informatics and Communica-399

tions, ser. AIC’09, Moscow, Russia: World Scientific, Engineering Academy, and Society400

(WSEAS), 2009, pp. 19–24, ISBN: 9789604741076.401

[3] E. National Academies of Sciences and Medicine, Open Science by Design: Realizing a402

Vision for 21st Century Research. Washington, DC: The National Academies Press, 2018.403

DOI: 10.17226/25116.404

[4] F. De Carlo, D. Gürsoy, F. Marone, et al., “Scientific data exchange: a schema for HDF5-405

based storage of raw and analyzed data,” Journal of synchrotron radiation, vol. 21, no. 6,406

pp. 1224–1230, 2014.407

ing.grid, 2024 16

https://doi.org/10.1109/CCGrid.2013.9
https://doi.org/10.17226/25116

SOFTWARE DESCRIPTOR

[5] C. M. Klingner, M. Denker, S. Grün, et al., “Research data management and data sharing408

for reproducible research—results of a community survey of the german national research409

data infrastructure initiative neuroscience,” Eneuro, vol. 10, no. 2, 2023.410

[6] European Commission and Directorate-General for Research and Innovation, Cost-benefit411

analysis for FAIR research data : cost of not having FAIR research data. Publications412

Office, 2019. DOI: 10.2777/02999.413

[7] W. K.Michener, “Meta-information concepts for ecological data management,” Ecological414

Informatics, vol. 1, no. 1, pp. 3–7, 2006. DOI: 10.1016/j.ecoinf.2005.08.004.415

[8] N. Preuss, G. Staudter, M.Weber, R. Anderl, and P. F. Pelz, “Methods and technologies for416

research-and metadata management in collaborative experimental research,” in Applied417

Mechanics and Materials, Trans Tech Publ, vol. 885, 2018, pp. 170–183.418

[9] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, et al., “The fair guiding principles for419

scientific data management and stewardship,” Scientific Data, vol. 3, no. 1, p. 160 018,420

2016, ISSN: 2052-4463. DOI: 10.1038/sdata.2016.18.421

[10] A. Jacobsen, R. de Miranda Azevedo, N. Juty, et al., “FAIR Principles: Interpretations422

and Implementation Considerations,” Data Intelligence, vol. 2, no. 1-2, pp. 10–29, Jan.423

2020, ISSN: 2641-435X. DOI: 10.1162/dint_r_00024.424

[11] Probst, Matthias, Documentation of HDF5 Research Data Management Toolbox (v1.4.0),425

2024. [Online]. Available: https://h5rdmtoolbox.readthedocs.io/en/v1.4.0/,426

(accessed: 17.06.2024).427

[12] J. M. Perkel, “Why Jupyter is data scientists’ computational notebook of choice,” Nature,428

vol. 563, no. 7732, pp. 145–147, 2018.429

[13] P. Greenfield, M. Droettboom, and E. Bray, “ASDF: A new data format for astronomy,”430

Astronomy and computing, vol. 12, pp. 240–251, 2015.431

[14] E. Taaheri and D.Wynne, “An HDF-EOS and data formatting primer for the ECS project,”432

Raytheon Company, Tech. Rep., Mar. 2001.433

[15] P. Klosowski, M. Koennecke, J. Tischler, and R. Osborn, “NeXus: A common format for434

the exchange of neutron and synchroton data,” Physica B: Condensed Matter, vol. 241,435

pp. 151–153, 1997.436

[16] T. Hauser, “Parallel i/o for the cgns system,” in 42nd AIAA Aerospace Sciences Meeting437

and Exhibit, 2004, p. 1088. DOI: 10.2514/6.2004-1088.438

[17] S. Koranne, Hierarchical Data Format 5 : HDF5. Springer, 2011, pp. 191–200, ISBN:439

978-1-4419-7719-9. DOI: 10.1007/978-1-4419-7719-9_10.440

[18] S. Poirier, A. Buteau, M. Ounsy, et al., “Common Data Model Access: A Unified Layer to441

Access Data From Data Analysis Point OF View,” Icalepcs, Grenoble, October, 2011.442

[19] J. Gregory, “The CF metadata standard,” CLIVAR Exchanges, vol. 8, no. 4, p. 4, 2003.443

[20] J. Moore and S. Kunis, “Zarr: A cloud-optimized storage for interactive access of large444

arrays,” in Proceedings of the Conference on Research Data Infrastructure, vol. 1, 2023.445

[21] A. Ingargiola, T. Laurence, R. Boutelle, S.Weiss, and X.Michalet, “Photon-HDF5: an open446

file format for timestamp-based single-molecule fluorescence experiments,” Biophysical447

journal, vol. 110, no. 1, pp. 26–33, 2016.448

ing.grid, 2024 17

https://doi.org/10.2777/02999
https://doi.org/10.1016/j.ecoinf.2005.08.004
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1162/dint_r_00024
https://h5rdmtoolbox.readthedocs.io/en/v1.4.0/
https://doi.org/10.2514/6.2004-1088
https://doi.org/10.1007/978-1-4419-7719-9_10

SOFTWARE DESCRIPTOR FAIR HDF5-based Data Management

[22] L. Gosink, J. Shalf, K. Stockinger, K. Wu, and W. Bethel, “HDF5-FastQuery: Accelerat-449

ing complex queries on HDF datasets using fast bitmap indices,” in 18th International450

Conference on Scientific and Statistical Database Management (SSDBM’06), IEEE, 2006,451

pp. 149–158.452

[23] The HDF Group, Hierarchical Data Format, version 5. [Online]. Available: https://ww453

w.hdfgroup.org/HDF5/, (accessed: 18.12.2023).454

[24] A. Collette, Python and HDF5. O’Reilly Media, Inc., 2013, ISBN: 9781449367831.455

[25] A. Salazar, B.Wentzel, S. Schimmler, R. Gläser, S. Hanf, and S.A. Schunk, “How research456

data management plans can help in harmonizing open science and approaches in the digital457

economy,” Chemistry–A European Journal, vol. 29, no. 9, e202202720, 2023.458

[26] B. Schembera and D. Iglezakis, “EngMeta: metadata for computational engineering,”459

International Journal of Metadata, Semantics and Ontologies, vol. 14, no. 1, pp. 26–38,460

2020.461

[27] D. Iglezakis, D. Terzijska, S. Arndt, et al., “Modelling scientific processes with the m4i462

ontology,” in Proceedings of the Conference on Research Data Infrastructure, vol. 1,463

2023. DOI: /10.52825/cordi.v1i.271.464

[28] S. Hoyer and J. Hamman, “xarray: ND labeled arrays and datasets in Python,” Journal of465

Open Research Software, vol. 5, no. 1, 2017.466

[29] Manola, F., Miller, E., Resource Description Framework (RDF). Primer. W3C Recom-467

mendation 10 February 2004, 2004. [Online]. Available: http://www.w3.org/TR/rdf-468

primer/, (accessed: 17.06.2024).469

[30] P. Hitzler, M. Krötzsch, S. Rudolph, and Y. Sure, Semantic Web: Grundlagen. Springer,470

2008, vol. 1.471

[31] D. Brickley and L. Miller, FOAF vocabulary specification 0.99, 2014. [Online]. Available:472

http://xmlns.com/foaf/spec/, (accessed: 17.06.2024).473

[32] S. Arndt, B. Farnbacher, M. Fuhrmans, et al., “Metadata4Ing: An ontology for describing474

the generation of research data within a scientific activity.,” 2023. DOI: /10.5281/zeno475

do.8382665.476

[33] M.-A. Sicilia, E. García-Barriocanal, and S. Sánchez-Alonso, “Community curation in477

open dataset repositories: Insights from zenodo,” Procedia Computer Science, vol. 106,478

pp. 54–60, 2017. DOI: 10.1016/j.procs.2017.03.009.479

[34] M. Thelwall and K. Kousha, “Figshare: A universal repository for academic resource480

sharing?” Online Information Review, vol. 40, no. 3, pp. 333–346, 2016. DOI: 10.1108481

/OIR-06-2015-0190.482

[35] K. Chodorow and M. Dirolf,MongoDB - The Definitive Guide: Powerful and Scalable483

Data Storage. O’Reilly, 2010, pp. I–XVII, 1–193, ISBN: 978-1-449-38156-1.484

[36] T. Kluyver, B. Ragan-Kelley, F. Pérez, et al., “Jupyter Notebooks-a publishing format for485

reproducible computational workflows.,” Elpub, vol. 2016, pp. 87–90, 2016.486

ing.grid, 2024 18

https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/
https://doi.org//10.52825/cordi.v1i.271
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://xmlns.com/foaf/spec/
https://doi.org//10.5281/zenodo.8382665
https://doi.org//10.5281/zenodo.8382665
https://doi.org//10.5281/zenodo.8382665
https://doi.org/10.1016/j.procs.2017.03.009
https://doi.org/10.1108/OIR-06-2015-0190
https://doi.org/10.1108/OIR-06-2015-0190
https://doi.org/10.1108/OIR-06-2015-0190

	Introduction
	Outline of the paper

	Scope and related work
	Concepts and architecture of the toolbox
	layout
	convention
	wrapper
	repository
	database

	Documentation
	Limitations
	Conclusion and Outlook
	Acknowledgements
	Roles and contributions

