
�

Date Received:

2022-12-05

Licenses:

This article is licensed under: cb

Keywords:

FAIR, reproducibility, scientific

workflows, tool comparison, workflow

management

Data availability:

Data can be found here:

https://github.com/BAMrese

arch/NFDI4IngScientificWor

kflowRequirements

Software availability:

Software can be found here:

https://github.com/BAMrese

arch/NFDI4IngScientificWor

kflowRequirements

RESEARCH ARTICLE

preprints
Evaluation of tools for describing, reproducing and reusing

scientific workflows

Philipp Diercks
1

Dennis Gläser�
2

Ontje Lünsdorf
3

Michael Selzer�
4

Bernd Flemisch�
2

Jörg F. Unger�
1

1. Department 7.7 Modeling and Simulation, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin.

2. Lehrstuhl für Wasser- und Umweltsystemmodellierung, University of Stuttgart, Stuttgart.

3. Institut für Vernetzte Energiesysteme, Deutsches Zentrum für Luft- und Raumfahrt, Oldenburg.

4. Institut für Angewandte Materialien-MM, Karlsruher Institut für Technologie, Karlsruhe.

Abstract. In the field of computational science and engineering, workflows often entail

the application of various software, for instance, for simulation or pre- and postprocessing.

Typically, these components have to be combined in arbitrarily complex workflows to address

a specific research question. In order for peer researchers to understand, reproduce and

(re)use the findings of a scientific publication, several challenges have to be addressed. For

instance, the employed workflow has to be automated and information on all used software

must be available for a reproduction of the results. Moreover, the results must be traceable

and the workflow documented and readable to allow for external verification and greater trust.

In this paper, existing workflow management systems (WfMSs) are discussed regarding their

suitability for describing, reproducing and reusing scientific workflows. To this end, a set of

general requirements for WfMSs were deduced from user stories that we deem relevant

in the domain of computational science and engineering. On the basis of an exemplary

workflow implementation, publicly hosted at GitHub (https://github.com/BAMresear

ch/NFDI4IngScientificWorkflowRequirements), a selection of different WfMSs is

compared with respect to these requirements, to support fellow scientists in identifying the

WfMSs that best suit their requirements.

1 Introduction1

With increasing volume, complexity and creation speed of scholarly data, humans rely more2

and more on computational support in processing this data. The “FAIR guiding principles for3

scientific data management and stewardship” [41] were introduced in order to improve the ability4

of machines to automatically find and use that data. FAIR comprises the four foundational5

principles “that all research objects should be Findable, Accessible, Interoperable and Reusable6

(FAIR) both for machines and for people”. In giving abstract, high-level and domain-independent7

1

https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://orcid.org/0000-0001-9646-881X
https://orcid.org/0000-0002-9756-646X
https://orcid.org/0000-0001-8188-620X
https://orcid.org/0000-0003-0035-0951
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements

RESEARCH ARTICLE

guidelines, the authors answer the question of what constitutes good data management. However,8

the implementation of these guidelines is still in its infancy, with many challenges not yet9

identified and some of which may not have readily available solutions [31]. Furthermore, efforts10

are made towards an Internet of FAIR Data and Services (IFDS) [17], which requires not only11

the data, but also the tools and (compute) services to be FAIR.12

Data processing is usually not a single task, but in general (and in particular for computational13

simulations) relies on a chain of tools. Thus, to achieve transparency, adaptability and repro-14

ducibility of (computational) research, the FAIR principles must be applied to all components15

of the research process. This includes the tools (i. e. any research software) used to analyze the16

data, but also the scientific workflow itself which describes how the various processes depend on17

each other. In a community-driven effort, the FAIR principles are applied to research software18

and are extended to its specific characteristics by the FAIR for Research Software Working19

Group [9]. For a discussion of how the FAIR principles should apply to workflows and workflow20

management systems (WfMSs) we refer to the work by Goble et. al. [20].21

In addition, in recent years there has been a tremendous development of different tools (see22

e. g. https://github.com/pditommaso/awesome-pipeline) that aid the definition and23

automation of computational workflows. These WfMSs have great potential in supporting the24

goal above which is further discussed in section 1.1.25

In this paper, we would like to discuss howWfMSs can contribute to the transparency, adaptability26

and reproducibility of computational research, which are aspects that ultimately increase the27

credibility of research results. Based on the authors’ experience, user stories that are relevant in28

the domain of computational science and engineering are defined. These user stories are then29

used to extract a set of general requirements for WfMSs. Several different tools are compared30

with respect to these requirements to support fellow scientists in identifying the tools that best31

suit their requirements. The list of tools selected for comparison is subjective and certainly not32

complete. However, a GitHub repository [16] providing an implementation of an exemplary33

workflow for all tools and a short documentation with a link to further information was created,34

with the aim to continuously add more tools in the future. Furthermore, by demonstrating how35

the different tools could be used, we would like to encourage people to use WfMSs in their daily36

work.37

1.1 Introduction to workflow management systems38

In this paper, we use the term process to describe a computation, that is, the execution of a39

program to produce output data from input data. A process can be arbitrarily complex, but40

from the point of view of the workflow, it is a single, indivisible step. A workflow describes41

how individual processes relate to each other. Software-driven scientific workflows are often42

characterized by a complex interplay of various pieces of software executed in a particular order.43

The output of one process may serve as input to a subsequent process, which requires them to44

be executed sequentially with a proper mapping of outputs to inputs. Other computations are45

independent of each other and can be executed in parallel. Thus, one of the main tasks of WfMSs46

is the proper and efficient scheduling of the individual processes.47

As shown in fig. 1, each process in the workflow, just as the workflow itself, takes some input to48

ing.grid, 2022 2

https://github.com/pditommaso/awesome-pipeline

RESEARCH ARTICLE

Figure 1: Schematic representation of software-driven scientific workflows.

produce output data. A more detailed discussion of the different levels of abstractions related to49

workflows can be found in Griem et al. [21]. The behavior of a process is primarily determined50

by the source code that describes it, but may also be influenced by the interpreters/compilers51

used for translation or the machines used for execution. Moreover, the source code of a process52

may carry dependencies to other software packages such that the behavior of a process possibly53

depends on their versions. We use the term computation environment to collect all those software54

dependencies, that is, interpreters and/or compilers as well as third-party libraries and packages55

that contribute to the computations carried out in a process. The exact version numbers of all56

involved packages are crucial, as the workflow may not work with newer or older packages, or,57

may produce different results.58

As outlined in [30], WfMSs may be grouped into five classes. First, tools like Galaxy [1],59

KNIME [8], and Pegasus [14] provide a graphical user interface (GUI) to define scientific60

workflows. Thus, no programming skills are required and the WfMS is easily accessible for61

everybody. With the second group, workflows are defined using a set of classes and functions62

for generic programming languages (libraries and packages). This has the advantage that version63

control (e. g. usingGit (https://git-scm.com)) can be employed on the workflow. In addition,64

the tool can be used without a graphical interface, e. g. in a server environment. Examples of65

prominent tools are AiiDA [23, 38], doit [34], Balsam [33], FireWorks [24] and SciPipe [28].66

Third, tools like Nextflow [15], Snakemake [27], Bpipe [32], Guix Workflow Language [44] and67

Cluster Flow [18] express the workflow using a domain specific language (DSL). A DSL is a68

language tailored to a specific problem. In this context, it offers declarations and statements to69

implement often occurring constructs in workflow definitions, which improves the readability70

ing.grid, 2022 3

https://git-scm.com

RESEARCH ARTICLE

and reduces the amount of code. Moreover, the advantages of the second group also apply71

for the third group. In contrast to the definition of the workflow in a programmatic way, the72

fourth group comprises tools like Popper [25] and Argo workflows (https://argoproj.g73

ithub.io/argo-workflows/) which allow to specify the workflow in a purely declarative74

way, by using configuration file formats like YAML [7]. In this case, the workflow specification75

is concise and can be easily understood, but lacks expressiveness compared to the definition76

of the workflow using programming languages. Fifth, there are system-independent workflow77

specification languages like CWL [13] or WDL (https://github.com/openwdl/wdl). These78

define a declarative language standard for describing workflows, which can then be executed by79

a number of different engines like Cromwell [40], Toil [39], and Tibanna [29].80

WfMSs can be used to create, execute and monitor workflows. They can help to achieve81

reproducibility of research results by avoiding manual steps and automating the execution of82

the individual processes in the correct order. More importantly, for a third person to reproduce83

and reuse the workflow, it needs to be portable, that is, executable on any machine. Portability84

can be supported by WfMSs with the integration of package management systems and container85

technologies, which allow them to automatically re-instantiate the compute environment. Another86

advantage of using WfMSs is the increase in transparency through a clear and readable workflow87

specification. Moreover, after completion of the workflow, the tool can help to trace back88

a computed value to its origin, by logging all inputs, outputs and possibly metadata of all89

computations.90

2 User stories91

Starting from user stories that we consider representative for computational science and engi-92

neering, a set of requirements is derived that serves as a basis for the comparison of different93

WfMSs. In particular, a discussion on how the different tools implement these requirements is94

provided.95

Reproducibility, which is key to transparent research, is the main focus of the first user story96

(see section 2.1). The second user story (see section 2.2) deals with research groups that develop97

workflows in a joint effort where subgroups or individuals work on different components of the98

workflow. Finally, the third user story focuses on computational research that involves generating99

and processing large amounts of data, which poses special demands on how the workflow tools100

organize the data that is created upon workflow execution (see section 2.3).101

2.1 Transparent and reproducible research paper102

As a researcher, I want to share the code for my paper such that others are able to easily reproduce103

my results.104

In this user story, the main objective is to guarantee the reproducibility of computational results105

presented in scientific publications. Here, reproducibility means that a peer researcher is able to106

rerun the workflow on some other machine while obtaining results that are in good agreement107

with those reported in the publication. Mere reproduction could also be achieved without a108

workflow tool, e. g. by providing a script that executes the required commands in the right109

ing.grid, 2022 4

https://argoproj.github.io/argo-workflows/
https://argoproj.github.io/argo-workflows/
https://argoproj.github.io/argo-workflows/
https://github.com/openwdl/wdl

RESEARCH ARTICLE

order, but this comes with a number of issues that may be solved with a standardized workflow110

description.111

First of all, reconstructing the logic behind the generation and processing of results directly from112

script code is cumbersome and reduces the transparency of the research, especially for complex113

workflows. Second, it is not straightforward for peer researchers to extract certain processes of a114

workflow from a script and embed them into a different research project, hence the reusability115

aspect is poorly addressed with this solution. Workflow descriptions may provide a remedy to116

both of these issues, provided that each process in the workflow is defined as a unit with a clear117

interface (see section 3.7).118

While the workflow description helps peers to understand the details behind a research project,119

it comes with an overhead on the side of the workflow creator, in particular when using a WfMS120

for the first time. In the prevalent academic climate, we therefore think that an important aspect121

of WfMSs is how easy they are to get started with (see section 3.9).122

In the development phase, a workflow is typically run many times until its implementation is123

satisfactory. With a scripted automation, the entire workflow is always executed, even if only one124

process was changed since the last run. Since WfMSs have to know the dependencies between125

processes, this opens up the possibility to identify and select only those parts of a workflow that126

have to be rerun (see section 3.8). Besides this, the WfMS can display to the user which parts127

are currently being executed, which ones have already been up-to-date, and which ones are still128

to be picked (see section 3.2).129

A general issue is that a workflow, or even each process in it, has a specific set of software- and130

possibly hardware-requirements. This makes both reproducibility and reusability difficult to131

achieve, especially over longer time scales, unless the computation environment in which the132

original study was carried out is documented in a way that allows for a later re-instantiation.133

The use of package managers that can export a given environment into a machine-readable134

format from which they can then recreate that environment at a later time, may help to overcome135

this issue. Another promising approach is to rely on container technologies. WfMSs have the136

potential to automate the re-instantiation of a computation environment via integration of either137

one of the above-mentioned technologies (see section 3.5). This makes it much easier for peers138

to reproduce and/or reuse parts of a published workflow.139

2.2 Joint research (group)140

As part of a research group, I want to be able to interconnect and reuse components of several141

different workflows so that everyone may benefit from their colleagues’work.142

Similar to the previous user story, the output of such a workflow could be a scientific paper.143

However, this user story explicitly considers interdisciplinary workflows in which the reusability144

of individual components/modules is essential. Each process in the workflow may require a145

different expertise and hence modularity and a common framework is necessary for an efficient146

collaboration.147

Many of the difficulties discussed in the previous user story are shared in a joint research project.148

However, the collaborative effort in which the workflow description and those of its components149

ing.grid, 2022 5

RESEARCH ARTICLE

are developed promotes the importance of clear interfaces (see section 3.7) to ease communication150

and an intuitive dependency handling mechanism (see section 3.5).151

Another challenge here is that such workflows often consist of heterogeneous models of dif-152

ferent complexity, such as large computations requiring high-performance computing (HPC),153

preprocessing of experimental data or postprocessing analyses. Due to this heterogeneity, it may154

be beneficial to outsource computationally demanding tasks to HPC systems, while executing155

cheaper tasks locally (see section 3.1). Workflows with such computationally expensive tasks156

can also strongly benefit from effective caching mechanisms and the reuse of cached results157

wherever possible (see section 3.8).158

Finally, support for a hierarchical embedding of sub-workflows (possibly published and ver-159

sioned) in another workflow is of great benefit as this allows for an easy integration of improve-160

ments made in the sub-workflows by other developers (see section 3.6).161

2.3 Complex hierarchical computations162

As a materials scientist, I want to be able to automate and manage complex workflows so I can163

keep track of all associated data.164

Workflows in which screening or parameter sweeps are required typically involve running a large165

number of simulations. Moreover, these workflows are often very complex with many levels of166

dependencies between the individual tasks. Good data management that provides access to the167

full provenance graph of all data can help to retain an overview over the large amounts of data168

produced by such workflows (see section 3.4). For instance, the data management could be such169

that desired information may be efficiently extracted via query mechanisms.170

Due to the large amount of computationally demanding tasks in such workflows, it is helpful171

if some computations can be outsourced to HPC systems (see section 3.1) with a clean way of172

querying the current status during the typically long execution times (see section 3.2).173

3 Specific requirements on workflow management systems174

The user stories described above allow us to identify 11 requirements on WfMSs. They will be175

described in the following and serve as evaluation criteria for the individual WfMSs discussed176

in section 5.177

3.1 Support for job scheduling system178

As already mentioned, the main task of a WfMS is to automatically execute the processes of a179

workflow in the correct order such that the dependencies between them are satisfied. However,180

processes that do not depend on each other may be executed in parallel in order to speed up the181

overall computation time. This requirement focuses on the ability of a workflow tool to distribute182

the computations on available resources. Job scheduling systems like e. g. Slurm (also commonly183

referred to as batch scheduling or batch systems) are often used to manage computations to be run184

and their resource requirements (number of nodes, CPUs, memory, runtime, etc.). Therefore, it185

is of great benefit if WfMSs support the integration of widely-used batch systems such that users186

ing.grid, 2022 6

RESEARCH ARTICLE

can specify and also observe the used resources alongside other computations that were submitted187

to their batch system in use. Besides this, this requirement captures the ability of a WfMS to188

outsource computations to a remote machine, e. g. a HPC cluster or cloud. For traditional HPC189

cluster systems it is usually necessary to transfer input and output data between the local system190

and the cluster system. This can be done using the secure shell protocol (SSH) and a WfMS may191

provide the automated transfer of a job’s associated data. Ideally, the workflow can be executed192

anywhere without changing the workflow definition itself, but only the runtime arguments or a193

configuration file. The fulfillment of this requirement is evaluated by the following criteria:194

The workflow system supports the execution of the workflow on the local system.195

The workflow system supports the execution of the workflow on the local system via196

a batch system.197

The workflow system supports the execution of the workflow via a batch system on198

the local or a remote system.199

3.2 Monitoring200

Depending on the application, the execution of scientific workflows can be very time-consuming.201

This can be caused by compute-intensive processes such as numerical simulations, or by a202

large number of short processes that are executed many times. In both cases, it can be very203

helpful to be able to query the state of the execution, that is, which processes have been finished,204

which processes are currently being executed, and which are still pending. A trivial way of such205

monitoring would be, for instance, when the workflow is started in a terminal which is kept206

open to inspect the output written by the workflow system and the running processes. However,207

ideally, the workflow system allows for submission of the workflow in the form of a process208

running in the background, while still providing means to monitor the state of the execution. For209

this requirement, two criteria are distinguished:210

The only way to monitor the workflow is to watch the console output.211

The workflow system provides a way to query the execution status at any time.212

3.3 Graphical user interface213

Independent of a particular execution of the workflow, the workflow system may provide214

facilities to visualize the graph of the workflow, indicating the mutual dependencies of the215

individual processes and the direction of the flow of data. One can think of this graph as the216

template for the data provenance graph. This visualization can help in conveying the logic217

behind a particular workflow, making it easier for other researchers to understand and possibly218

incorporate it into their own research. The latter requires that the workflow system is able219

to handle hierarchical workflows, that is, workflows that contain one or more sub-workflows220

as processes (see section 3.6). Beyond a mere visualization, a GUI may allow for visually221

connecting different workflows into a new one by means of drag & drop. We evaluate the222

features of a graphical user interface by means of the following three criteria:223

The workflow system provides no means to visualize the workflow224

ing.grid, 2022 7

RESEARCH ARTICLE

The workflow system or third-party tools allow to visualize the workflow definition225

The workflow system or third-party tools provide a GUI that enables users to graphi-226

cally create workflows227

3.4 Data provenance228

The data provenance graph contains, for a particular execution of the workflow, which data and229

processes participated in the generation of a particular piece of data. Thus, this is closely related230

to the workflow itself, which can be thought of as a template for how that data generation should231

take place. However, a concrete realization of the workflow must contain information on the232

exact input data, parameters and intermediate results, possibly along with meta information on233

the person that executed the workflow, the involved software, the compute resources used and234

the time it took to finish. Collection of all relevant information, its storage in machine-readable235

formats and subsequent publication alongside the data can be very useful for future researchers236

in order to understand how exactly the data was produced. Ideally, the workflow system has the237

means to automatically collect this information upon workflow execution, which we evaluate238

using the following criteria:239

The workflow system provides no means to export relevant information from a partic-240

ular execution241

The workflow system stores all results (also intermediate) together with provenance242

metadata about how they were produced243

3.5 Compute environment244

In order to guarantee interoperability and reproducibility of scientific workflows, the work-245

flows need to be executable by others. Here, the re-instantiation of the compute environment246

(installation of libraries or source code) poses the main challenge. Therefore, it is of great247

use if the workflow tool is able to automatically deploy the software stack (on a per workflow248

or per process basis) by means of a package manager (e. g. conda https://conda.io/) or249

that running processes in a container (e. g. Docker https://www.docker.com, Apptainer250

https://apptainer.org (formerly Singularity)) is integrated in the tool. The automatic251

deployment of the software stack facilitates the execution of the workflow. However, it does not252

(always) enable reusage, that is, the associated software can be understood, modified, built upon253

or incorporated into other software [9]. For instance, if a container image is used, it is important254

that the container build recipe (e. g. Dockerfile) is provided. This increases the reusability as it255

documents how a productive environment, suitable to execute the given workflow or process,256

can be set up. The author of the workflow, however, is deemed to be responsible for the docu-257

mentation of the compute environment. For this requirement, we define the following evaluation258

criteria:259

The automatic instantiation of the compute environment is not intended.260

The workflow system allows the automatic instantiation of the compute environment261

on a per workflow basis.262

ing.grid, 2022 8

https://conda.io/
https://www.docker.com
https://apptainer.org

RESEARCH ARTICLE

The workflow system allows the automatic instantiation of the compute environment263

on a per process basis.264

3.6 Hierarchical composition of workflows265

Aworkflow consists of a mapping between a set of inputs (could be empty) and a set of outputs,266

whereas in between a number of processes are performed. Connecting the output of one workflow267

to the input of another workflow results in a new, longer workflow. This is particularly relevant268

in situations where multiple people share a common set of procedures (e. g. common pre- and269

postprocessing routines). In this case, copying the preprocessing workflow into another one is270

certainly always possible, but does not allow to jointly perform modifications and work with271

different versions. Moreover, a composition might also require to define separate compute272

environments for each sub-workflow (e.g. using docker/singularity or conda). Executing all273

sub-workflows in the same environment might not be possible because each sub-workflow might274

use different tools or even the same tools but with different versions (e. g. python2 vs. python3).275

This promotes the importance of supporting heterogeneous compute environments, which is276

reflected in the evaluation criteria for this requirement:277

The workflow system does not allow the composition of workflows.278

The workflow system allows to embed a workflow into another one for a single279

compute environment (homogeneous composition).280

The workflow system allows to embed a workflow into another one for arbitrary many281

(on a per process basis) compute environments (hierarchical composition).282

3.7 Interfaces283

In a traditional file-based pipeline, the output files produced by one process are used as inputs to284

a subsequent process. However, it is often more convenient to pass non-file output (e. g. float or285

integer values) directly from one process to another without the creation of intermediate files.286

In this case, it is desirable that the workflow tool is able to check the validity of the data (e. g.287

the correct data type) to be processed. Furthermore, this defines the interface for a process288

more clearly and makes it easier for someone else to understand how to use, adapt or extend289

the workflow/process. In contrast, in a file-based pipeline, this is usually not the case since a290

dependency in form of a file does not give information about the type of data contained in that291

file. We distinguish these different types of interfaces by the following criteria:292

The workflow system is purely file-based and does not define interface formats.293

The workflow system allows for passing file and non-file arguments between processes.294

The workflow system allows for defining strongly-typed process interfaces, supporting295

both file and non-file arguments.296

3.8 Up-to-dateness297

There are different areas for the application of workflows. On the one hand, people might use298

a workflow to define a single piece of reproducible code that, when executed, always returns299

ing.grid, 2022 9

RESEARCH ARTICLE

the same result. Based on that, they might start a large quantity of different jobs and use the300

workflow system to perform this task. Another area of application is the constant development301

within the workflow (e.g. exchanging processes, varying parameters or even modifying the302

source code of a process) until a satisfactory result is obtained. The two scenarios require a303

slightly different behavior of the workflow system. In the first scenario, all runs should be kept304

in the data provenance graph with a documentation of how each result instance has been obtained305

(e.g. by always documenting the codes, parameters, and processes). If identical runs (identical306

inputs and processes should result in the same output) are detected, a recomputation should be307

avoided and the original output should be linked in the data provenance graph. The benefit of308

this behavior certainly depends on the ratio between the computation time for a single process309

compared to the overhead to query the data base.310

However, when changing the processes (e.g. coding a new time integration scheme or a new311

constitutive model), the workflow system should rather behave like a build system (such as make)312

- only recomputing the steps that are changed or that depend on these changes. In particular for313

complex problems, this allows to work with complex dependencies without manually triggering314

computations and results in automatically recomputing only the relevant parts. An example is a315

paper with multiple figures where each is a result of complex simulations that in itself depend on316

a set of general modules developed in the paper. The “erroneous” runs are usually not interesting317

and should be overwritten.318

How this is handled varies between the tools, yielding the following evaluation criteria:319

R The complete workflow is always Recomputed.320

L A new entry in the data provenance graph is created which Links the previous result321

(without the need to recompute already existing results).322

U Only the parts are recreated (Updated) that are not up-to-date. This usually reduces the323

overhead to store multiple instances of the workflow, but at the same time also prevents -324

without additional effort (e.g. when executing in different folders) computing multiple325

instances of the same workflow.326

3.9 Ease of first use327

Although this is not a requirement per-se, it is beneficial if the workflow system has an intuitive328

syntax/interface and little work is required for a new user to define a first workflow. Research329

applications typically have a high intrinsic complexity, and therefore, the complexity added by330

the workflow management should be as small as possible. Evaluation criteria:331

difficult332

intermediate333

easy334

3.10 Manually editable workflow definition335

While it can be beneficial to create and edit workflows using a GUI (see section 3.3), it may be336

important that the resulting workflow description is given in a human-readable format. This337

ing.grid, 2022 10

RESEARCH ARTICLE

does not solely mean that the definition should be a text file, but also that the structure (e. g.338

indentation) and the naming are comprehensive. This facilitates version-controlling with git, in339

particular the code review process. Moreover, this does not force all users and/or developers to340

rely on the GUI. Evaluation criteria:341

The workflow description is a binary file.342

The workflow description is a text file but hard to interpret by humans.343

The workflow description is a fully human-readable file format.344

3.11 Platform for publishing and sharing workflows345

The benefit of a workflow system is already significant when using it for individual research such346

as the development of an individual’s paper or reproducing the paper someone else has written,347

when their data processing pipeline is fully reproducible, documented and published. However,348

the benefit can be even more increased if people are able to jointly work on (sub-)workflows349

together; particularly when a hierarchical workflow system is used. Even though workflows can350

easily be shared together with the work (e.g. in a repository), it might be beneficial to provide a351

platform that allows to publish documented workflows with a search and versioning functionality.352

This feature is not part of the requirement matrix to compare the different tools, but we consider353

a documentation of these platforms in the subsequent section as a good starting point for further354

research (exchange).355

4 Simple use case356

A simple exemplary use case was defined in order to analyze and evaluate the different workflow357

tools with respect to the requirements stated in section 3. This example is considered to be358

representative for many problems simulating physical processes in engineering science using359

numerical discretization techniques. It consists of six steps, as shown in fig. 2:360

1. generation of a computational mesh (Gmsh)361

2. mesh format conversion (MeshIO)362

3. numerical simulation (FEniCS)363

4. post-processing of the simulation results (ParaView)364

5. preparation of macro definitions (Python)365

6. compilation of a paper into a .pdf file using the simulation results (Tectonic)366

The workflow starts from a given geometry on which the simulation should be carried out and367

generates a computational mesh in the first step using Gmsh [19]. Here, the user can specify the368

size of the computational domain by a float value domain_size. The resulting mesh file format369

is not supported by FEniCS [4], which is the software that we are using for the simulation carried370

out in the third step. Therefore, we convert the mesh file in the second step of the workflow from371

.msh to .xdmf using the python package MeshIO [35]. The simulation step yields result files in372

VTK file format [36] and returns the number of degrees of freedom used by the simulation as373

ing.grid, 2022 11

RESEARCH ARTICLE

Figure 2: Task dependency graph of the simple use case. Mapping of input and output data is

indicated with black arrows with solid lines. A dashed line refers to non-file input or output

(parameters). Here, red color is used to distinguish user input from automatic data transfer.

an integer value num_dofs. The VTK files are further processed using the python application374

programming interface (API) of ParaView [2], which yields the data of a plot-over-line of the375

numerical solution across the domain in .csv file format. This data, together with the values for376

the domain size and the number of degrees of freedom, is inserted into the paper and compiled377

into a .pdf file using the LATEX engine Tectonic [42] in the final step of the workflow.378

Most steps transfer data among each other via files, but we intentionally built in the transfer of379

the number of degrees of freedom as an integer value to check how well such a situation can380

be handled by the tools. Example implementations of the simple use case for various tools are381

available in a public repository [16].382

5 Tool comparison383

In this section, the selected WfMSs and their most important features are described and set in384

relation to the requirements defined in section 3. We note that to the best of our knowledge,385

existing add-on packages to the individual WfMSs are as well considered.386

5.1 AiiDA387

AiiDA [23, 38], the automated interactive infrastructure and database for computational science,388

is an open source Python infrastructure. With AiiDA, workflows are written in the Python389

programming language and managed and executed using the associated command line interface390

“verdi”.391

ing.grid, 2022 12

RESEARCH ARTICLE

AiiDA was designed for use cases that are more focused on running heavy simulation codes392

on heterogeneous compute hardware. Therefore, one of the key features of AiiDA is the HPC393

interface. It supports the execution of (sub-) workflows on any machine and most resource394

managers are integrated. In case of remote computing resources, any data transfer, retrieval and395

storing of the results in the database or status checking is handled by the AiiDA daemon process.396

Another key feature is AiiDA’s workflow writing system which provides strongly typed interfaces397

and allows for easy composition and reuse of workflows. Moreover, AiiDA automatically keeps398

track of all inputs, outputs and metadata of all calculations, which can be exported in the form of399

provenance graphs.400

AiiDA’s workflow system enables to easily compose workflows, but AiiDA lacks in providing401

the compute environment, such that the composition of heterogeneous workflows is challenging402

since it requires the installation of software dependencies of the workflow on any machine that403

should be used withAiiDA. The reason for this may be the challenges in using conda or containers404

on HPC systems. On traditional HPC systems the preferred way of running software is to use405

the provided module system to compile specific application code. The system may be isolated,406

such that missing access to the internet prevents installing conda environments or downloading407

container images. Moreover, successfully using container technology as an MPI-distributed408

application across several nodes seems to be a technical challenge due to compatibility issues in409

the MPI configuration and certain Infiniband drivers.410

In addition to that, running external codes with AiiDA requires the implementation of an AiiDA411

plugin which instructs AiiDA on how to run that code. This poses an additional overhead if the412

application code changes frequently during development of the workflow. Also, in the special413

case of FEniCS (see section 4), which can be used to solve partial differential equations and414

therefore covers a wide spectrum of applications, it is very difficult to define a general plugin415

interface which covers all models. We note that due to this use case which is rather different416

from the use cases that AiiDA was designed for, the implementation of the simple use case417

(see section 4) uses “aiida-shell” [22], an extension to the AiiDA core package which makes418

running shell commands easy. While this is convenient to get a workflow running quickly, this419

leads to an undefined process interface since this was the purpose of the aforementioned plugin420

for an external code. Considering the points above, compared to the other tools, the learning421

curve with AiiDA is fairly steep. In contrast to file-based workflow management systems, AiiDA422

defines data types for any data that should be stored in the database. Consequently, non-file423

based inputs are well defined, but this is not necessarily the case for file data.424

In terms of the requirements defined in section 3, AiiDA’s strong points are execution, monitoring425

and provenance. Due to the possibility to export provenance graphs, also level two of the426

requirement “Graphical user interface” is reached. Lastly, caching can be enabled in AiiDA427

to save computation time. Caching in AiiDA means, that the database will be searched for a428

calculation of the same hash and if this is the case, the same outputs are reused.429

5.2 Common Workflow Language430

“Common Workflow Language (CWL) [5] is an open standard for describing how to run command431

line tools and connect them to create workflows” (https://www.commonwl.org/). One432

ing.grid, 2022 13

https://www.commonwl.org/

RESEARCH ARTICLE

benefit of it being a standard is that workflows expressed in CWL do not have to be executed by433

a particular workflow engine, but can be run by any engine that is able to parse the standard. In434

fact, there exist a number of workflow engines that support CWL workflows, e. g. the reference435

implementation cwltool (https://github.com/common-workflow-language/cwltool),436

Toil [39] or StreamFlow [10].437

CWL was designed with a focus on data analysis using command line programs. To create a438

workflow, each of the command line programs is “wrapped” in a CWL description, defining what439

inputs are needed, what outputs are produced and how to call the underlying program. Typically,440

this step also reduces the possibly large number of options of the underlying command line tool441

to a few options or inputs that are relevant for the particular task of the workflow. In a workflow,442

the wrapped command line tools can be defined as individual processes, and the outputs of one443

process can be mapped to the inputs of other processes. This information is enough for the444

interpreter to build up the dependency graph, and processes that do not depend on each other445

may be executed in parallel. A process can also be another workflow, thus, hierarchical workflow446

composition is possible. Moreover, there exist workflow engines for CWL that support using job447

managers like e. g. Slurm [45].448

The CWL standard also provides means to specify the software requirements of a process. For449

instance, one can provide the URL of a docker image or docker file to be used for the execution450

of a process. In case of the latter, the image is automatically built from the provided docker file,451

which itself contains the information on all required software dependencies. Besides this, the452

CWL standard contains language features that allow listing software dependencies directly in453

the description of a workflow or process, and workflow engines may automatically make these454

software packages available upon execution. As one example, the current release of cwltool455

supports the definition of software requirements in the form of e. g. Conda packages that are then456

automatically installed when the workflow is run (see e. g. our implementation and the respective457

pipelines at [16]).458

In contrast to workflow engines that operate within a particular programming language, the459

transfer of data from one process to another cannot occur directly via memory with CWL. For460

instance, if the result of a process is an integer value, this value has to be read from a file produced461

by the process, or, from its console output. However, this does not have to be done in a separate462

process or by again wrapping the command line tool inside some script, since CWL supports the463

definition of inline JavaScript code that is executed by the interpreter. This allows retrieving, for464

instance, integer or floating point return values from a process with a small piece of code.465

CWL requires the types of all inputs and outputs to be specified, which has the benefit that the466

interpreter can do type checks before the execution of the workflow. A variety of primitive467

types, as well as arrays, files or directories, are available. Files can refer to local as well as468

online resources, and in the case of the latter, resources are automatically fetched and used upon469

workflow execution.470

There exist a variety of tools built around the CWL standard, such as the Rabix Composer (https:471

//rabix.io/) for visualizing and composing workflows in a GUI. Besides that and as mentioned472

before, there are several workflow engines that support CWL and some of which provide extra473

features. For instance, cwltool allows for tracking provenance information of individual workflow474

ing.grid, 2022 14

https://github.com/common-workflow-language/cwltool
https://rabix.io/
https://rabix.io/
https://rabix.io/

RESEARCH ARTICLE

runs. However, to the best of our knowledge, there exists no tool that automatically checks which475

results are up-to-date and do not have to be reproduced (see section 3.8).476

The CWL standard allows to specify the format of an input or output file by means of an IRI477

(Internationalized Resource Identifier) that points to online-available resource where the file478

format is defined. For processes whose output files are passed to the inputs of subsequent jobs,479

the workflow engine can use this information to check if the formats match. To the best of our480

knowledge, cwltool does so by verifying that the IRIs are identical, or performs further reasoning481

in case the IRIs point to classes in ontologies (see, for instance, the class for the JSON file format482

in the EDAM ontology at edamontology.org/format_3464). Such reasoning can make use of483

defined relationships between classes of the ontology to determine file format compatibility. For484

more information on file format specifications in CWL see commonwl.org/user_guide/topics/file-485

formats.html.486

5.3 doit487

“doit comes from the idea of bringing the power of build-tools to execute any kind of task” [34].488

The automation tool doit is written in the Python programming language. In contrast to systems489

which offer a GUI, knowledge of the programming language is required. However, it is not490

required to learn an additional API since task metadata is returned as a Python dictionary.491

Therefore, we consider this as very easy to get started quickly.492

With doit, any shell command available on the system or python code can be executed. This493

also includes the execution of processes on a remote machine, although all necessary steps (e. g.494

connecting to the remote via SSH) need to be defined by the user. In general, such behavior495

as described in section 3.1 is possible, but it is not a built-in feature of doit. Also, doit does496

not intend to provide the compute environment. Therefore, while in general the composition of497

workflows (see section 3.6) is easily possible via python imports, this only works for a single498

environment. The status of the execution can be monitored via the console. Here, doit will skip499

the execution of processes which are up-to-date and would produce the same result of a previous500

execution. To determine the correct order in which processes should be executed, doit also501

creates a directed acyclic graph (DAG) which could be used to visualize dependencies between502

processes using “doit-graph” (https://github.com/pydoit/doit-graph), an extension to503

doit. For each run (specific instance of the workflow), doit will save the results of each process504

in a database. However, the tool does not provide control over what is stored in the database.505

On the one hand, doit allows to pass results of one process as input to another process directly,506

without creating intermediate files, so it is not purely file-based. On the other hand, the interface507

for non-file based inputs does not define the data type.508

5.4 Guix Workflow Language509

The Guix Workflow Language (GWL) [44] is an extension to the open source package manager510

GNU Guix [12]. GWL leverages several features from Guix, chief among these is the compute511

environment management. Like Guix, GWL only supports GNU/Linux systems.512

GWL can automatically construct an execution graph from the workflow process input/output513

ing.grid, 2022 15

http://edamontology.org/format_3464
https://www.commonwl.org/user_guide/topics/file-formats.html
https://www.commonwl.org/user_guide/topics/file-formats.html
https://www.commonwl.org/user_guide/topics/file-formats.html
https://github.com/pydoit/doit-graph

RESEARCH ARTICLE

dependencies but also allows a manual specification. Support for HPC schedulers via DRMAA1
514

is also available.515

GWL doesn’t provide a graphical user interface, interactions are carried out using a command-line516

interface in a text terminal. Monitoring is also only available in the form of simple terminal517

output.518

There is support to generate a GraphViz (see e. g. https://graphviz.org) description of the519

workflow, which allows basic visualization of a workflow. Although not conveniently exposed2,520

GWL has a noteworthy unique feature inherited from Guix: precise software provenance tracking.521

Guix contains complete build instructions for every package (including their history through git),522

which enables accounting of source code and the build process, like for example compile options,523

of all tools used in the workflow. Integrity of this information is ensured through cryptographic524

hash functions. This information can be used to construct data provenance graphs with a high525

level of integrity (basically all userspace code of the compute environment can be accounted526

for [11]).527

GWL uses Guix to setup compute environments for workflow processes. Each process is528

executed in an isolated3 compute environment in which only specified software packages are529

available. This approach minimizes (accidential) side-effects from system software packages530

and improves workflow reproducibility. Interoperability also benefits from this approach, since531

a Guix installation is the only requirement to execute a workflow on another machine. As Guix532

provides build instructions for all software packages, it should be easily possible to recreate533

compute environments in the future, even if the originally compiled binaries have been deprecated534

in the meanwhile (see [3] for a discussion about long-term reproducibility).535

Composition of workflows is possible, workflows can be imported into other workflows. Com-536

position happens either by extracting individual processes (repurposing them in a new workflow)537

or by appending new processes onto the existing workflow processes.538

GWL relies exclusively on files as interface to workflow processes. There’s no support to539

exchange data on other channels, as workflow processes are executed in isolated environments.540

Like other workflow tools, GWL caches the result of a workflow process using the hash of its541

input data. If a cached result for the input hash value exists, the workflow processes execution is542

skipped.543

GWL is written in the Scheme [37] implementation GNU Guile [43], but in addition to Scheme,544

workflows can also be defined in wisp [6], a variant of Scheme with significant whitespace. wisp545

syntax thus resembles Python, which is expected to flatten the learning curve a bit for scientific546

audience. However, error messages are very hard to read without any background in Scheme.547

On first use, GWL will be very difficult in general. This problem is acknowledged by the GWL548

authors and might be subject to improvements in the future.549

1. Distributed Resource Management Application API https://www.drmaa.org

2. GWL doesn’t provide a command to export provenance graphs in any way, instead Guix needs to be queried for build

instruction, dependency graphs and similar provenance information of a workflows software packages

3. By default, lightweight isolation is setup by limiting the PATH environment variable to the compute environment.

Stronger isolation via Linux containers is also optionally available.

ing.grid, 2022 16

https://graphviz.org
https://www.drmaa.org

RESEARCH ARTICLE

As both wisp and Scheme code is almost free of syntactic noise in general, workflows are almost550

self-describing and easily human-readable.551

In summary, GWL provides a very interesting and sound set of features especially for repro-552

ducibility and interoperability. These features come at the cost of a Guix installation, which553

requires administrator privileges. The workflow language is concise and expressive, but error554

messages are hard to read. At the current stage, GWL can only be recommended to experienced555

scheme programmers or to specialists with high requirements on software reproducibility and556

integrity.557

5.5 Nextflow and Snakemake558

With Nextflow [15] and Snakemake [30], the workflow is defined using a DSL which is an559

extension to a generic programming language (Groovy for Nextflow and Python for Snakemake).560

Moreover, Nextflow and Snakemake also allow to use the underlying programming language561

to generate metadata programmatically. Thus, authoring scientific workflows with Nextflow or562

Snakemake is very easy.563

The process to be executed is usually a shell command or an external script. The integration564

with various scripting languages is an import feature of Snakemake as well as Nextflow, which565

encourages readable modular code for downstream plotting and summary tasks. Also boilerplate566

code for command line interfaces (CLIs) in external scripts can be avoided. Another feature of567

Snakemake is the integration of Jupyter notebooks, which can be used to interactively develop568

components of the workflow.569

Both tools implement a CLI to manage and run workflows. By default, the status of the execution570

is monitored via the console. With Nextflow, it is possible to monitor the status of the execution571

via a weblog. Snakemake supports an external server to monitor the progress of submitted572

workflows.573

With regard to the execution of the workflow (section 3.1), the user can easily run the workflow574

on the local machine and the submission via a resource manager (e. g. Slurm, Torque) is integrated.575

Therefore, individual process resources can be easily defined with these tools if the workflow is576

submitted on a system where a resource manager is installed, i. e. on a traditional HPC cluster577

system. Despite this, only level two of the defined criteria is met for Nextflow, since the execution578

of the workflow on a remote machine and the accompanied transfer of data is not handled by the579

tool. For Snakemake, if the CLI option “default-remote-provider” is used, all input and output580

files are automatically down- and uploaded to the defined remote storage, such that no workflow581

modification is necessary.582

The requirement “up-to-dateness” is handled differently by Nextflow and Snakemake. By default,583

Nextflow recomputes the complete workflow, but with a single command-line option existing584

results are retrieved from the cache and linked such that a re-execution is not required. In585

this case, Nextflow allows storing multiple instances of the same workflow upon variation of a586

configuration parameter. Snakemake will behave like a build tool in this context and skip the587

re-execution of processes whose targets already exist and update any process whose dependencies588

have changed.589

ing.grid, 2022 17

RESEARCH ARTICLE

A strong point of Nextflow and Snakemake is the integration of the conda package management590

system and container technologies like docker. For example, the compute environment can be591

defined for each process based on a conda environment specification file or a certain docker592

image. Upon execution of the workflow, the specified compute environment is re-instantiated593

automatically by the workflow tool, making it very easy to reproduce results of or built upon594

existing workflows. Furthermore, since the tool is able to deploy the software stack on a per595

process basis, the composition of hierarchical workflows as outlined in section 3.6 is possible.596

Similar to doit, both tools do not provide a GUI to graphically create and modify workflows.597

However, a visualization of the workflow, i. e. a dependency graph of the processes, can be598

exported. Moreover, it is possible to export extensive reports detailing the provenance of the599

generated data.600

Nextflow and Snakemake can also be regarded as file-based workflow management systems.601

Therefore, interface formats, i. e. class structures or types of the parameters passed from one602

process to the subsequent one, are not clearly defined.603

5.6 Evaluation matrix604

The evaluation of the workflow tools provided in section 5 in terms of the requirements described605

in section 3 on the example of the workflow outlined in section 4 yields the evaluation matrix606

depicted in table 1.

Table 1: Evaluation of the workflow tools.

Requirement Workflow tool

AiiDA CWL doit GWL Nextflow Snake-

make

Job scheduling system

Monitoring

Graphical user interface

Provenance

Compute environment

Composition

Process interfaces

Up-to-dateness L R U U L U

Ease-of-first-use

Manually editable

607

6 Summary608

In this work, six differentWfMSs (AiiDA,CWL, doit,GWL,Nextflow and Snakemake) are studied.609

Their performance is evaluated based on a set of requirements derived from three typical user610

stories in the field of computational science and engineering. On the one hand, the user stories611

are focusing on facilitating the development process, and on the other hand on the possibility of612

reusing and reproducing results obtained using research software. The choice for one WfMS or613

the other is strongly subjective and depends on the particular application and the preferences of614

ing.grid, 2022 18

RESEARCH ARTICLE

its developers. The overview given in table 1 together with the assessments in section 5 may615

only serve as a basis for an individual decision making.616

For researchers that want to start using a WfMS, an important factor is how easy it is to get a first617

workflow running. For projects that are written in Python, a natural choice may be doit, which618

operates in Python and is easy to use for anyone familiar with the language. Another benefit619

of this system is that one can use Python functions as processes, making it possible to easily620

transfer data from one process to the other via memory without the need to write and read to621

disk. In order to make a workflow portable, developers have to provide additional resources that622

allow users to prepare their environment such that all software dependencies are met, prior to623

the workflow execution.624

To create portable workflows more easily, convenient tools are Nextflow or Snakemake, where625

one can specify the compute environment in terms of a conda environment file or a container626

image on a per-process basis. They require to learn a new domain-specific language, however,627

our assessment is that it is easy to get started as only little syntax has to be learned in order to get628

a first workflow running.629

The strengths ofAiiDA are the native support for distributing the workload on different (registered)630

machines, the comprehensive provenance tracking, and also the possibility to transfer data among631

processes without the creation of intermediate files.632

CWL has the benefit of being a language standard rather than a specific tool maintained by a633

dedicated group of developers. This has led to a variety of tooling developed by the community634

as e. g. editors for visualizing and modifying workflows with a GUI. Moreover, the workflow635

description states the version of the standard in which it is written, such that any interpreter636

supporting this standard should execute it properly, which reduces the problem of version pinning637

on the level of the workflow interpreter.638

Especially for larger workflows composed of processes that are still under development, and639

are thus changing over time, it may be useful to rely on tools that allow to define the process640

interfaces by means of strongly-typed arguments. This can help to detect errors early on, e. g. by641

static type checkers. CWL and AiiDA support the definition of strongly-typed process interfaces.642

The rich set of options and features of these tools make them more difficult to learn, but at the643

same time expose a large number of possibilities.644

7 Outlook645

This overview is not meant to be static, but we plan to continue the documentation online in646

the git repository [16] that contains the implementation of the simple use case. This allows647

us to take into consideration other WfMSs in the future, and to extend the documentation648

accordingly. In particular, we would like to make the repository a community effort allowing649

others to contribute either by modifications of the existing tools or adding new WfMSs. All of650

our workflow implementations are continuously and automatically tested using GitHub Actions651

https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements/ac652

tions, which may act as an additional source of documentation on how to launch the workflows.653

ing.grid, 2022 19

https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements/actions
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements/actions
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements/actions

RESEARCH ARTICLE

One of the challenges we have identified is the use of container technology in the HPC envi-654

ronment. In most cases, the way users should interact with such a system is through a module655

system provided by the system administrators. The module system allows to control the software656

environment (versioning, compilers) in a precise manner, but the user is limited to the provided657

software stack. For specific applications, self-written code can be compiled using the available658

development environment and subsequently run on the system, which is currently the state of659

the art in using HPC systems. However, this breaks the portability of the workflow.660

Container technology, employing the “build once and run anywhere” concept, seems to be a661

promising solution to this problem. Ideally, one would like to be able to run the container662

application on the HPC system, just as any other MPI-distributed application. Unfortunately,663

there are a number of problems entailed with this approach.664

When building the container, great care must be taken with regard to the MPI configuration,665

such that it can be run successfully across several nodes. Another issue is the configuration of666

Infiniband drivers. The container has to be build according to the specifics of the HPC system667

that is targeted for execution. From the perspective of the user, this entails a large difficulty,668

and we think that further work needs to be done to find solutions which enable non-experts in669

container technology to execute containerized applications successfully in an HPC environment.670

Furthermore, challenges related to the joint development of workflows became apparent. In this671

regard, strongly-typed interfaces are required in order to minimize errors and transparently and672

clearly communicate the metadata (inputs, outputs) associated with a process in the workflow.673

This is recommended both for single parameters, but it would be also great to extend that idea674

to files - not only defining the file type which is already possible within CWL - but potentially675

allowing a type checking of the complete data structure within the file. However, based on our676

experience with the selected tools, these interfaces and their benefits come at the cost of some677

form of plugin or wrapper around the software that is to be executed, thus possibly limiting the678

functionality of the wrapped tool. This means there is a trade-off between easy authoring of the679

workflow definition (e. g. easily executing any shell command) and implementation overhead680

for the sake of well-defined interfaces.681

Another aspect is how the workflow logic can be communicated efficiently. Although each of682

the tools allows to generate a graph of the workflow, the dependencies between processes can683

only be visualized for an executable implementation of the workflow, which most likely does684

not exist in early stages of the project where it is needed the most.685

An important aspect is the documentation of the workflow results and how they have been686

obtained. Most tools offer an option to export the data provenance graph, however it would be687

great to define a general standard supported by all tools as e.g. provided by CWLProv [26].688

Financial disclosure689

None reported.690

Conflict of interest691

The authors declare no potential conflict of interests.692

ing.grid, 2022 20

RESEARCH ARTICLE

8 Acknowledgements693

The authors would like to thank the Federal Government and the Heads of Government of the694

Länder, as well as the Joint Science Conference (GWK), for their funding and support within the695

framework of the NFDI4Ing consortium. Funded by the German Research Foundation (DFG) -696

project number 442146713. Moreover, we would like to thank Sebastiaan P. Huber, Michael697

R. Crusoe, Eduardo Schettino, Ricardo Wurmus, Paolo Di Tommaso and Johannes Köster for698

their valuable remarks and comments on an earlier version of this article and the workflow699

implementations.700

9 Roles and contributions701

Philipp Diercks: Investigation; methodology; software; writing - original draft; writing - review702

and editing.703

Dennis Gläser: Investigation; methodology; software; writing - original draft; writing - review704

and editing.705

Ontje Lünsdorf: Investigation (supporting); software; writing - original draft (supporting).706

Michael Selzer: Writing - review and editing (supporting).707

Bernd Flemisch: Conceptualization (supporting); Funding acquisition; Project administration;708

Writing - review and editing.709

Jörg F. Unger: Conceptualization (lead); Funding acquisition; Project administration; Writing -710

original draft (supporting); Writing - review and editing.711

References712

[1] Enis Afgan et al. “The Galaxy platform for accessible, reproducible and collaborative713

biomedical analyses: 2018 update”. In: Nucleic Acids Research 46.W1 (May 2018),714

W537–W544. ISSN: 0305-1048. DOI: 10.1093/nar/gky379. eprint: https://aca715

demic.oup.com/nar/article-pdf/46/W1/W537/25110642/gky379.pdf. URL:716

https://doi.org/10.1093/nar/gky379.717

[2] James Ahrens, Berk Geveci, and Charles Law. “ParaView: An End-User Tool for Large-718

Data Visualization”. In: The Visualization Handbook. Elsevier, 2005.719

[3] Mohammad Akhlaghi et al. “Toward Long-Term and Archivable Reproducibility”. In:720

Computing in Science & Engineering 23.3 (May 2021), pp. 82–91. ISSN: 1521-9615,721

1558-366X. DOI: 10.1109/mcse.2021.3072860. URL: https://doi.org/10.1109722

/mcse.2021.3072860.723

[4] M.S. Alnaes et al. “The FEniCS Project Version 1.5”. In: Archive of Numerical Software 3724

(2015). DOI: 10.11588/ans.2015.100.20553.725

[5] Peter Amstutz et al. Common Workflow Language, v1.0. https://doi.org/10.6084726

/m9.figshare.3115156.v2. July 2016. DOI: 10.6084/m9.figshare.3115156.v2.727

ing.grid, 2022 21

https://doi.org/10.1093/nar/gky379
https://academic.oup.com/nar/article-pdf/46/W1/W537/25110642/gky379.pdf
https://academic.oup.com/nar/article-pdf/46/W1/W537/25110642/gky379.pdf
https://academic.oup.com/nar/article-pdf/46/W1/W537/25110642/gky379.pdf
https://doi.org/10.1093/nar/gky379
https://doi.org/10.1109/mcse.2021.3072860
https://doi.org/10.1109/mcse.2021.3072860
https://doi.org/10.1109/mcse.2021.3072860
https://doi.org/10.1109/mcse.2021.3072860
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.6084/m9.figshare.3115156.v2

RESEARCH ARTICLE

[6] Arne Babenhauserheide. SRFI 119: wisp: simpler indentation-sensitive scheme. https:728

//srfi.schemers.org/srfi-119/. June 2015.729

[7] Oren Ben-Kiki, Clark Evans, and Ingy döt Net. YAML Ain’t Markup Language (YAML)730

version 1.2. Accessed: 2022-08-31. Version 1.2. https://yaml.org/spec/1.2.2/.731

2021.732

[8] Michael R. Berthold et al. “KNIME: The Konstanz Information Miner”. In: Data Analysis733

, Machine Learning and Applications : Proceedings of the 31st Annual Conference of the734

Gesellschaft für Klassifikation e. V., Albert-Ludwigs-Universität Freiburg, March 7-9 ,735

2007. New York: Springer, 2007.736

[9] Neil P. Chue Hong et al. FAIR Principles for Research Software (FAIR4RS Principles).737

https://doi.org/10.15497/RDA00068. Version 1.0. May 2022. DOI: 10.15497738

/RDA00068. URL: https://doi.org/10.15497/RDA00068.739

[10] Iacopo Colonnelli et al. “StreamFlow: cross-breeding cloud with HPC”. In: IEEE Trans-740

actions on Emerging Topics in Computing 9.4 (2021), pp. 1723–1737. DOI: 10.1109741

/TETC.2020.3019202.742

[11] Ludovic Courtès. “Building a Secure Software Supply Chain with GNU Guix”. In: The743

Art, Science, and Engineering of Programming 7.1 (June 2022). ISSN: 2473-7321. DOI:744

10.22152/programming-journal.org/2023/7/1. URL: https://doi.org/10.2745

2152/programming-journal.org/2023/7/1.746

[12] Ludovic Courtès. “Functional Package Management with Guix”. In: European Lisp747

Symposium (June 2013). DOI: 10.48550/ARXIV.1305.4584. URL: https://arxiv748

.org/abs/1305.4584.749

[13] Michael R. Crusoe et al. “Methods included. standardizing computational reuse and750

portability with the Common Workflow Language”. In: Commun. ACM 65.6 (June 2022),751

pp. 54–63. ISSN: 0001-0782, 1557-7317. DOI: 10.1145/3486897. URL: https://do752

i.org/10.1145/3486897.753

[14] Ewa Deelman et al. “Pegasus, a workflow management system for science automation”.754

In: Future Generation Computer Systems 46 (2015), pp. 17–35. ISSN: 0167-739X. DOI:755

10.1016/j.future.2014.10.008. URL: https://www.sciencedirect.com/sci756

ence/article/pii/S0167739X14002015.757

[15] Paolo Di Tommaso et al. “Nextflow enables reproducible computational workflows”.758

In: Nat Biotechnol 35.4 (Apr. 2017), pp. 316–319. ISSN: 1087-0156, 1546-1696. DOI:759

10.1038/nbt.3820. URL: https://doi.org/10.1038/nbt.3820.760

[16] Philipp Diercks et al. NFDI4Ing Scientific Workflow Requirements. Version 0.0.1. https:761

//github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements. July762

2022.763

[17] Directorate-General for Research and Innovation (European Commission). First report764

and recommendations of the Commission high level expert group on the European Open765

Science Cloud. Available at https://op.europa.eu/s/wGAL. 2016. DOI: 10.2777/9766

40154.767

ing.grid, 2022 22

https://srfi.schemers.org/srfi-119/
https://srfi.schemers.org/srfi-119/
https://srfi.schemers.org/srfi-119/
https://yaml.org/spec/1.2.2/
https://doi.org/10.15497/RDA00068
https://doi.org/10.15497/RDA00068
https://doi.org/10.15497/RDA00068
https://doi.org/10.15497/RDA00068
https://doi.org/10.15497/RDA00068
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.22152/programming-journal.org/2023/7/1
https://doi.org/10.22152/programming-journal.org/2023/7/1
https://doi.org/10.22152/programming-journal.org/2023/7/1
https://doi.org/10.22152/programming-journal.org/2023/7/1
https://doi.org/10.48550/ARXIV.1305.4584
https://arxiv.org/abs/1305.4584
https://arxiv.org/abs/1305.4584
https://arxiv.org/abs/1305.4584
https://doi.org/10.1145/3486897
https://doi.org/10.1145/3486897
https://doi.org/10.1145/3486897
https://doi.org/10.1145/3486897
https://doi.org/10.1016/j.future.2014.10.008
https://www.sciencedirect.com/science/article/pii/S0167739X14002015
https://www.sciencedirect.com/science/article/pii/S0167739X14002015
https://www.sciencedirect.com/science/article/pii/S0167739X14002015
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements
https://op.europa.eu/s/wGAL
https://doi.org/10.2777/940154
https://doi.org/10.2777/940154
https://doi.org/10.2777/940154

RESEARCH ARTICLE

[18] Philip Ewels et al. “Cluster Flow:A user-friendly bioinformatics workflow tool [version 2;768

referees: 3 approved].” In: F1000Research 5 (2016), p. 2824. DOI: 10.12688/f1000res769

earch.10335.2. URL: http://dx.doi.org/10.12688/f1000research.10335.2.770

[19] Christophe Geuzaine and Jean-François Remacle. “Gmsh: A 3-D finite element mesh771

generator with built-in pre- and post-processing facilities. THE GMSH PAPER”. In:772

Int. J. Numer. Meth. Engng. 79.11 (May 2009), pp. 1309–1331. ISSN: 0029-5981. DOI:773

10.1002/nme.2579. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.10774

02/nme.2579. URL: https://doi.org/10.1002/nme.2579.775

[20] Carole Goble et al. “FAIR Computational Workflows”. In: Data Intelligence 2.1-2 (Jan.776

2020), pp. 108–121. ISSN: 2641-435X. DOI: 10.1162/dint_a_00033. eprint: http777

s://direct.mit.edu/dint/article-pdf/2/1-2/108/1893377/dint_a_0003778

3.pdf. URL: %5Curl%7Bhttps://doi.org/10.1162/dint%5C_a%5C_00033%7D.779

[21] Lars Griem et al. “KadiStudio: FAIR Modelling of Scientific Research Processes”. In:780

Data Science Journal 21.1 (2022).781

[22] Sebastiaan P. Huber. aiida-shell. Version 0.2.0. https://github.com/sphuber/aiid782

a-shell. June 2022.783

[23] Sebastiaan P. Huber et al. “AiiDA1.0, a scalable computational infrastructure for automated784

reproducible workflows and data provenance”. In: Sci Data 7.1 (Sept. 2020). ISSN: 2052-785

4463. DOI: 10.1038/s41597-020-00638-4. URL: https://doi.org/10.1038/s4786

1597-020-00638-4.787

[24] Anubhav Jain et al. “FireWorks:Adynamic workflow system designed for high-throughput788

applications”. In: Concurrency Computat.: Pract. Exper. 27.17 (May 2015), pp. 5037–789

5059. ISSN: 1532-0626, 1532-0634. DOI: 10.1002/cpe.3505. URL: https://doi.o790

rg/10.1002/cpe.3505.791

[25] Ivo Jimenez et al. “The Popper Convention: Making Reproducible Systems Evaluation792

Practical”. In: 2017 IEEE International Parallel and Distributed Processing Symposium793

Workshops (IPDPSW). IEEE, May 2017, pp. 1561–1570. DOI: 10.1109/ipdpsw.2017794

.157. URL: https://doi.org/10.1109/ipdpsw.2017.157.795

[26] Farah Zaib Khan et al. “Sharing interoperable workflow provenance: A review of best796

practices and their practical application in CWLProv”. In: GigaScience 8.11 (Nov. 2019).797

ISSN: 2047-217X. DOI: 10.1093/gigascience/giz095. URL: https://doi.org/1798

0.1093/gigascience/giz095.799

[27] Johannes Köster and Sven Rahmann. “Snakemake—a scalable bioinformatics workflow800

engine”. In:Method. Biochem. Anal. 34.20 (May 2018), pp. 3600–3600. ISSN: 1367-4803,801

1460-2059. DOI: 10.1093/bioinformatics/bty350. URL: https://doi.org/10802

.1093/bioinformatics/bty350.803

[28] Samuel Lampa et al. “SciPipe: A workflow library for agile development of complex804

and dynamic bioinformatics pipelines”. In: GigaScience 8.5 (Apr. 2019). ISSN: 2047-805

217X. DOI: 10.1093/gigascience/giz044. eprint: https://academic.oup.c806

om/gigascience/article-pdf/8/5/giz044/28538382/giz044.pdf. URL:807

https://doi.org/10.1093/gigascience/giz044.808

ing.grid, 2022 23

https://doi.org/10.12688/f1000research.10335.2
https://doi.org/10.12688/f1000research.10335.2
https://doi.org/10.12688/f1000research.10335.2
http://dx.doi.org/10.12688/f1000research.10335.2
https://doi.org/10.1002/nme.2579
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2579
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2579
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2579
https://doi.org/10.1002/nme.2579
https://doi.org/10.1162/dint_a_00033
https://direct.mit.edu/dint/article-pdf/2/1-2/108/1893377/dint_a_00033.pdf
https://direct.mit.edu/dint/article-pdf/2/1-2/108/1893377/dint_a_00033.pdf
https://direct.mit.edu/dint/article-pdf/2/1-2/108/1893377/dint_a_00033.pdf
https://direct.mit.edu/dint/article-pdf/2/1-2/108/1893377/dint_a_00033.pdf
https://direct.mit.edu/dint/article-pdf/2/1-2/108/1893377/dint_a_00033.pdf
%5Curl%7Bhttps://doi.org/10.1162/dint%5C_a%5C_00033%7D
https://github.com/sphuber/aiida-shell
https://github.com/sphuber/aiida-shell
https://github.com/sphuber/aiida-shell
https://doi.org/10.1038/s41597-020-00638-4
https://doi.org/10.1038/s41597-020-00638-4
https://doi.org/10.1038/s41597-020-00638-4
https://doi.org/10.1038/s41597-020-00638-4
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1109/ipdpsw.2017.157
https://doi.org/10.1109/ipdpsw.2017.157
https://doi.org/10.1109/ipdpsw.2017.157
https://doi.org/10.1109/ipdpsw.2017.157
https://doi.org/10.1093/gigascience/giz095
https://doi.org/10.1093/gigascience/giz095
https://doi.org/10.1093/gigascience/giz095
https://doi.org/10.1093/gigascience/giz095
https://doi.org/10.1093/bioinformatics/bty350
https://doi.org/10.1093/bioinformatics/bty350
https://doi.org/10.1093/bioinformatics/bty350
https://doi.org/10.1093/bioinformatics/bty350
https://doi.org/10.1093/gigascience/giz044
https://academic.oup.com/gigascience/article-pdf/8/5/giz044/28538382/giz044.pdf
https://academic.oup.com/gigascience/article-pdf/8/5/giz044/28538382/giz044.pdf
https://academic.oup.com/gigascience/article-pdf/8/5/giz044/28538382/giz044.pdf
https://doi.org/10.1093/gigascience/giz044

RESEARCH ARTICLE

[29] Soohyun Lee et al. “Tibanna: Software for scalable execution of portable pipelines on the809

cloud”. In: Method. Biochem. Anal. 35.21 (May 2019), pp. 4424–4426. ISSN: 1367-4803,810

1460-2059. DOI: 10.1093/bioinformatics/btz379. eprint: https://academic811

.oup.com/bioinformatics/article-pdf/35/21/4424/31617561/btz379.pdf.812

URL: https://doi.org/10.1093/bioinformatics/btz379.813

[30] Felix Mölder et al. “Sustainable data analysis with Snakemake”. In: F1000Res 10 (Apr.814

2021), p. 33. ISSN: 2046-1402. DOI: 10.12688/f1000research.29032.2. URL:815

https://doi.org/10.12688/f1000research.29032.2.816

[31] Barend Mons et al. “The FAIR Principles: First Generation Implementation Choices and817

Challenges”. In: Data Intellegence 2.1-2 (Jan. 2020), pp. 1–9. ISSN: 2641-435X. DOI:818

10.1162/dint_e_00023. URL: https://doi.org/10.1162/dint%5C_e%5C_00819

023.820

[32] Simon P. Sadedin, Bernard Pope, and Alicia Oshlack. “Bpipe: A tool for running and man-821

aging bioinformatics pipelines”. In:Method. Biochem. Anal. 28.11 (Apr. 2012), pp. 1525–822

1526. ISSN: 1460-2059, 1367-4803. DOI: 10.1093/bioinformatics/bts167. eprint:823

https://academic.oup.com/bioinformatics/article-pdf/28/11/1525/1690824

5290/bts167.pdf. URL: https://doi.org/10.1093/bioinformatics/bts167.825

[33] Michael A. Salim et al. Balsam: Automated Scheduling and Execution of Dynamic, Data-826

Intensive HPC Workflows. https : / / arxiv . org / abs / 1909 . 08704. 2019. DOI:827

10.48550/ARXIV.1909.08704. URL: https://arxiv.org/abs/1909.08704.828

[34] Eduardo Naufel Schettino. pydoit/doit: Task management & automation tool (python).829

https://doi.org/10.5281/zenodo.4892136. June 2021. DOI: 10.5281/zenodo830

.4892136. URL: https://doi.org/10.5281/zenodo.4892136.831

[35] Nico Schlömer. meshio: Tools for mesh files. https://doi.org/10.5281/zeno832

do.6346837. Version v5.3.4. Mar. 2022. DOI: 10.5281/zenodo.6346837. URL:833

https://doi.org/10.5281/zenodo.6346837.834

[36] Will Schroeder et al. The visualization toolkit : an object-oriented approach to 3D graphics.835

4th ed. Kitware, 2006.836

[37] Michael Sperber et al. “Revised6 Report on the Algorithmic Language Scheme”. In: J.837

Funct. Program. 19.S1 (Aug. 2009), p. 1. ISSN: 0956-7968, 1469-7653. DOI: 10.1017838

/s0956796809990074. URL: https://doi.org/10.1017/s0956796809990074.839

[38] Martin Uhrin et al. “Workflows in AiiDA: Engineering a high-throughput, event-based840

engine for robust and modular computational workflows”. In: Nato. Sc. S. Ss. Iii. C. S. 187841

(Feb. 2021), p. 110086. ISSN: 0927-0256. DOI: 10.1016/j.commatsci.2020.110086.842

URL: https://doi.org/10.1016/j.commatsci.2020.110086.843

[39] John Vivian et al. “Toil enables reproducible, open source, big biomedical data analyses”.844

In: Nat Biotechnol 35.4 (Apr. 2017), pp. 314–316. ISSN: 1087-0156, 1546-1696. DOI:845

10.1038/nbt.3772. URL: https://doi.org/10.1038/nbt.3772.846

[40] Kate Voss, Geraldine Van Der Auwera, and Jeff Gentry. Full-stack genomics pipelining847

with GATK4 + WDL + Cromwell [version 1; not peer reviewed]. slides. https://f1000848

research.com/slides/6-1381. 2017. DOI: 10.7490/f1000research.1114634.1.849

URL: https://f1000research.com/slides/6-1381.850

ing.grid, 2022 24

https://doi.org/10.1093/bioinformatics/btz379
https://academic.oup.com/bioinformatics/article-pdf/35/21/4424/31617561/btz379.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/21/4424/31617561/btz379.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/21/4424/31617561/btz379.pdf
https://doi.org/10.1093/bioinformatics/btz379
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.1162/dint_e_00023
https://doi.org/10.1162/dint%5C_e%5C_00023
https://doi.org/10.1162/dint%5C_e%5C_00023
https://doi.org/10.1162/dint%5C_e%5C_00023
https://doi.org/10.1093/bioinformatics/bts167
https://academic.oup.com/bioinformatics/article-pdf/28/11/1525/16905290/bts167.pdf
https://academic.oup.com/bioinformatics/article-pdf/28/11/1525/16905290/bts167.pdf
https://academic.oup.com/bioinformatics/article-pdf/28/11/1525/16905290/bts167.pdf
https://doi.org/10.1093/bioinformatics/bts167
https://arxiv.org/abs/1909.08704
https://doi.org/10.48550/ARXIV.1909.08704
https://arxiv.org/abs/1909.08704
https://doi.org/10.5281/zenodo.4892136
https://doi.org/10.5281/zenodo.4892136
https://doi.org/10.5281/zenodo.4892136
https://doi.org/10.5281/zenodo.4892136
https://doi.org/10.5281/zenodo.4892136
https://doi.org/10.5281/zenodo.6346837
https://doi.org/10.5281/zenodo.6346837
https://doi.org/10.5281/zenodo.6346837
https://doi.org/10.5281/zenodo.6346837
https://doi.org/10.5281/zenodo.6346837
https://doi.org/10.1017/s0956796809990074
https://doi.org/10.1017/s0956796809990074
https://doi.org/10.1017/s0956796809990074
https://doi.org/10.1017/s0956796809990074
https://doi.org/10.1016/j.commatsci.2020.110086
https://doi.org/10.1016/j.commatsci.2020.110086
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1038/nbt.3772
https://f1000research.com/slides/6-1381
https://f1000research.com/slides/6-1381
https://f1000research.com/slides/6-1381
https://doi.org/10.7490/f1000research.1114634.1
https://f1000research.com/slides/6-1381

RESEARCH ARTICLE

[41] Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific data management851

and stewardship”. In: Sci Data 3.1 (Mar. 2016). ISSN: 2052-4463. DOI: 10.1038/sdat852

a.2016.18. URL: https://doi.org/10.1038/sdata.2016.18.853

[42] Peter Williams and Contributors. The Tectonic Typesetting System. https://tectonic-854

typesetting.github.io/en-US/. Accessed: 2022-06-02. 2022.855

[43] Andy Wingo et al. GNU Guile. https://www.gnu.org/software/guile/. Feb. 2022.856

[44] Ricardo Wurmus et al. GUIX Workflow Language. https://guixwl.org. Version 0.5.0.857

July 2022.858

[45] Andy B. Yoo, Morris A. Jette, and Mark Grondona. “SLURM: Simple Linux Utility for859

Resource Management”. In: Job Scheduling Strategies for Parallel Processing. Ed. by860

Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. Berlin, Heidelberg: Springer861

Berlin Heidelberg, 2003, pp. 44–60. ISBN: 978-3-540-39727-4.862

ing.grid, 2022 25

https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://tectonic-typesetting.github.io/en-US/
https://tectonic-typesetting.github.io/en-US/
https://tectonic-typesetting.github.io/en-US/
https://www.gnu.org/software/guile/
https://guixwl.org

	Introduction
	Introduction to workflow management systems

	User stories
	Transparent and reproducible research paper
	Joint research (group)
	Complex hierarchical computations

	Specific requirements on workflow management systems
	Support for job scheduling system
	Monitoring
	Graphical user interface
	Data provenance
	Compute environment
	Hierarchical composition of workflows
	Interfaces
	Up-to-dateness
	Ease of first use
	Manually editable workflow definition
	Platform for publishing and sharing workflows

	Simple use case
	Tool comparison
	AiiDA
	Common Workflow Language
	doit
	Guix Workflow Language
	Nextflow and Snakemake
	Evaluation matrix

	Summary
	Outlook
	Acknowledgements
	Roles and contributions

