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Abstract. Optimising the operation of physical systems can lead to significant energy

savings. This underscores the importance of researchers, planners and operators to focus

on innovative control strategies. SOFIRpy, a framework for co-simulation of functional mock-

up units (FMUs) with integrated research data management proposed in this paper, aims to

assist them in studying and implementing these novel approaches. SOFIRpy provides tools

for building FMUs from models of physical systems written in Modelica, implementing custom

controllers, running co-simulations and performing research data management (RDM). It is a

Python package hosted on PyPI, adhering to best practices in research software engineering.

1 Introduction1

Fluid systems are responsible for up to 8 % of electrical energy consumption in the European2

Union [1], [2]. Some of them are used for fulfilling the most basic human needs, e.g., water3

distribution systems. Others play an essential role in waste water disposal and treatment or4

in industry, e.g. for cooling chemical processes. Thus, there is great potential for achieving5

the energy savings targets declared by the European Commission in the Energy Efficiency6

Directive [3] by focusing on fluid systems. Up to 20 % of the energy consumption can be7

saved by optimising control for an entire fluid system rather than focusing on component level8

control [4], which underscores the importance for researchers, planners and operators to focus9

on this approach. Simultaneously, it is crucial to keep other challenges faced by fluid systems in10

mind, such as their safe operation.11

To support researchers, planners and operators innovating control methods for a wide range of12

physical systems – not just fluid systems – the software package SOFIRpy (Co-Simulation of13

Functional Mock-up Units with Integrated Research Data Management) presented in this work14

has been developed. It is a framework for co-simulation of custom controllers and physical15

systems, represented by Functional Mock-up Units (FMUs). SOFIRpy allows for implementing,16

comparing and analysing various control methods and configurations of physical systems. The17

1

https://github.com/fluid-systems/SOFIRpy
https://github.com/fluid-systems/SOFIRpy
mailto:kevin.logan@tu-darmstadt.de
https://orcid.org/0000-0001-5512-2679
https://orcid.org/0000-0002-5998-6754
https://orcid.org/0000-0001-9694-5145
https://orcid.org/0000-0002-0195-627X


SOFTWARE DESCRIPTOR SOFIRpy

software package includes features for easy-to-use research data management (RDM) as the18

importance of RDM for transparency and reproducibility of scientific results was considered19

from the beginning of the development. The development was motivated by a use-case in20

which distributed control of fluid systems using multi-agent control was studied. The design of21

the package was generalised from fluid systems to any physical system in order to ensure its22

usefulness beyond the motivating use-case.23

1.1 Statement of need24

Researchers, planners and operators need to optimise control of physical systems to realise the25

potential savings mentioned above. For this purpose, they need a tool that allows them to easily26

implement a variety of highly customised controllers and easily apply them to models of physical27

systems. This tool must allow them to run co-simulations of the controllers and the physical28

systems with a multitude of different configurations and parameters. The tool should provide29

the results of these simulations in an easily processable format that allows the users to analyse30

and visualise the data in order to evaluate the different control approaches. In order for them to31

keep track of the different simulation runs and configurations, the tool should provide integrated32

methods for RDM that allow users to trace and to reproduce individual runs. Additionally, this33

tool should be open source and not rely on proprietary dependencies. It should be possible to34

find and install the tool easily and incorporate it in common software setups.35

Such a tool did not exist prior to the development of SOFIRpy to the best of the authors’36

knowledge. Some related tools are discussed in Section 1.237

Keeping the original use-case in mind but generalising the application, these requirements can38

be summarised in five workflow steps:39

1. modelling physical systems40

2. creating custom controllers41

3. simulating controllers and physical systems with reciprocal dependencies42

4. results analysis43

5. data storage and RDM44

Detailed requirements for the different steps are given in the following.45

Users need to be able to easily create, configure and change models of the physical systems.46

They need a tool that can integrate representations of these systems and that provides simple47

interfaces for input of starting values and system configuration parameters. Users need to be48

able to run simulations of the physical systems without having to write their own solvers.49

Users need a tool that allows them as much freedom as possible to implement innovative control50

methods with potentially highly customised algorithms. They need the tool to allow them to51

implement the control methods using a widely disseminated and broadly used programming52

language. Users further need the framework of the tool to place minimal requirements on the53

implementations.54
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Users need to run co-simulations of the controllers and the physical systems. This means that55

there needs to be a defined interface for controllers and physical systems, through which inputs56

and outputs of each of the entities are exchanged at defined intervals during a simulation run.57

Users need to run large parameter studies for studying and evaluating the performance of the58

control methods. Accordingly, they need to easily set up and configure, as well as parametrise59

simulation runs.60

After running the simulations, users need the tool to allow them to process the results using61

other established tools compatible with the programming language of the tool itself. Users need62

the tool to store the results in a file using a non-proprietary, interoperable format. They further63

need to be able to supplement the stored results with metadata containing information on the64

setup and start values of the simulation that gave the results. This serves the joint purposes of65

keeping track of the results for the users of the tool and making the results more transparent and66

comprehensible for subsequent users of the data.67

Finally, users need to be able to reproduce results easily or rerun simulations with parameter68

variations. For this purpose, they need to be able to load all the data required to recreate the69

simulation setup from the file containing the results in such a way that the simulation can be70

rerun.71

1.2 State of the art72

While there are no software tools that can address all the workflow steps and requirements73

outlined above according to the best of the authors’ knowledge, several tools exist for individual74

ones. Some of these tools are among the dependencies of SOFIRpy.75

With regard to the first workflow step (modelling physical systems), SOFIRpy expands on76

OMPython, the OpenModelica Python API for building, compiling and solving Modelica mod-77

els [5]. SOFIRpy uses OMPython in its dependencies for Modelica FMU exports.78

FMPy is a library for simulating FMUs in Python, which also supports co-simulation and model79

exchange [6]. SOFIRpy uses FMPy to perform part of the third workflow step (simulating80

physical systems), but expands on it with the option of running co-simulations with the custom81

controllers written in Python. FMPy is included in the dependencies of SOFIRpy.82

The HILO-MPC package offers a broad range of possibilities for modelling, estimation problems,83

and control based on optimisation, model predictive control (MPC) aswell asmachine learning [7].84

HILO-MPC addresses the first three workflow steps of SOFIRpy. It requires users to explicitly85

formulate the equations that describe the physical system they are studying, whereas SOFIRpy86

allows users to use FMUs to represent the physical systems. Functionalities for RDM are not87

included in HILO-MPC.88

There are two frameworks that address several of the workflow steps of SOFIRpy. ETAUtility89

provides a framework for optimisation, simulation and communication with physical devices [8].90

Similarly to SOFIRpy, ETAUtility builds on FMPy to perform simulations. The focus of ETA91

Utility, however, lies on digital twins of factories and factory operation rather than on fluid and92

other physical systems. The FMUs in ETA Utility are used to run simulations in parallel to93

factory operations. For this reason, the framework focuses strongly on communication interfaces94
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commonly used in manufacturing environments for connecting physical devices, which is beyond95

the scope of SOFIRpy.96

The most extensive existing tool with similarities to SOFIRpy is Mosaik [9]. Mosaik is a97

framework for co-simulating many models by providing an interface to a variety of existing98

simulators for the purpose of performing smart grid simulations. Similarly to SOFIRpy, the99

framework organises information exchange between a variety of simulators for the purpose of100

co-simulation. In contrast to Mosaik, SOFIRpy focuses on FMUs and simulation of entities101

described in Modelica rather than providing interfaces to many different simulators. While102

Mosaik has also implemented an adapter to couple FMUs, this functionality is just one of many103

provided by the package. Both Mosaik and SOFIRpy allow for users to define custom models104

for controllers in Python. Mosaik offers comprehensive features for data handling with adapters105

to various databases, including not only InfluxDB and TimescaleDB, but also HDF5. SOFIRpy106

is limited to HDF5 for storing the results of simulated data. While Mosaik allows users to store107

metadata and connections related to the simulation results data, the focus of SOFIRpy on RDM108

and reproducibility remains unique to it.109

Several software packages perform partial functions of the steps enumerated above, yet SOFIRpy110

unites the functionalities in one overarching framework. Furthermore, none but one of the111

software packages mentioned above considers the aspect of RDM and no functionalities are112

provided for this vital step in scientific practice.113

2 Approach114

2.1 Design choices115

SOFIRpy has been developed as a software framework based on the requirements presented in116

Section 1.1. In the development phase of SOFIRpy, several options for each of the functionalities117

were considered. These options, the selection made and the reasoning behind it will be briefly118

presented.119

Coming from the original use-case, both a modelling and a simulation environment was needed120

for the fluid system as well as the multi-agent system for controlling it. For the fluid system,121

options for modelling and simulation available to the authors were: (a) using amodelling software,122

e.g. Dymola, OpenModelica or Matlab/Simulink, widely used in the community, (b) writing a123

custom model from scratch in Matlab or Python. Option (a) allows not only the possibility to124

work with a graphic user interface, significantly improving the user experience when modelling,125

but also the export of FMUs, a standardised format allowing interoperability with other software126

tools including the components of the SOFIRpy framework. Moreover, it allows creating FMUs127

of any physical system rather than only fluid systems. Consequently, a solution was chosen that128

reduces the need to write custom models for fluid systems.129

The choice of programming language for the co-simulation of FMU and controller models was130

made in favour of Python due to its prevalence as a programming language, especially in fields131

that are interesting for innovative control methods such as machine learning, and because it132

is non-proprietary. Though the original use-case was for studying multi-agent control of fluid133

systems, the design of SOFIRpy was generalised to allow studying any type of control method.134
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Accordingly, frameworks specific to agent-based modelling or control were not selected as a135

fixed choice. Instead, users need to write the custom models for the controllers themselves. This136

makes it possible to build implemented controllers on a wide range of other Python toolboxes,137

e.g. for machine learning.138

Regarding data storage, there is a great variety of options. The approach chosen for SOFIRpy139

is to store the simulation setup including used models and parameters together with the results140

of different simulation runs in one HDF5 file. The simulation results are also available as141

Pandas DataFrames [10]. Storing to HDF5 is performed using a wrapper around H5py, a Python142

package that offers easy-to-use methods for data storage and retrieval with HDF5 files. One143

advantage of this approach is that all relevant data and information about an experiment are144

stored in a single location. HDF5 files are versatile enough to store different data, such as the145

FMU binaries, the serialisations of the classes of the custom models written in Python as well as146

the simulation setup and the resulting simulation data. Furthermore, HDF5 files allow adding147

attributes to datasets and (sub-) groups, which is useful for including metadata for describing the148

simulation setup and runs. Metadata are not only useful for documentation purposes, but also for149

searching for specific simulation results using a set of parameters. The benefit of considering150

the RDM requirements in the fundamental design of SOFIRpy is that by providing easy-to-use,151

lightweight RDM features within the workflow software, users are motivated to apply them,152

ensuring improved scientific data as well as transparent and reproducible results.153

Finally, it was decided to package and publish SOFIRpy as a Python package. This facilities154

incorporating it in other software setups. Registering SOFIRpy on the package index PyPI also155

addresses the issues of findability, accessibility and easy installation.156

2.2 Scope157

SOFIRpy is aimed at researchers, planners and operators of fluid and other physical systems who158

want to analyse novel control approaches. The purpose of SOFIRpy is to provide a framework159

for co-simulating FMUs and custom-written models with integrated research data management.160

Of the workflow steps enumerated in Section 1.1, step 1 (modelling physical systems) was not161

included in the scope of SOFIRpy, restricting the package to interactions with FMU representa-162

tions of the systems. Step 2 (creating custom models for controllers) is the core of the work of163

the researchers, planners and operators, for which SOFRIpy offers a framework with as few164

restrictions as possible. For step 4 (results analysis), plenty of tools already exist. Therefore, this165

step lies in the responsibility of the user and is not entailed in the scope of the presented tool.166

SOFIRpy provides three main functionalities:167

(i) Export Modelica models and necessary solvers as an FMU168

(ii) Co-simulate FMUs with custom written controllers in Python (workflow step 3)169

(iii) Store data and metadata of the simulation inside a HDF5 file (workflow step 5)170

The first of the functionalities allows users to convert models written in the Modelica modelling171

language to FMUs. Exporting models to FMUs is also possible in the OpenModelica and Dymola172

GUI as well as many other software tools used in engineering practice. With SOFIRpy, however,173

this step can be integrated into the code-based workflow. This also allows users to set parameters174
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for the models and exporting them to FMUs from within their scripts. Separate methods are175

provided for OpenModelica and Dymola. This ensures SOFIRpy remains independent of176

commercial software while also providing full functionality for users of Dymola.177

For the second functionality, each entity, be it an FMU or a custom written model, is represented178

as an instance of the same abstract class SimulationEntity. The data class System contains the179

data and the name of each simulation entity. Further data classes are defined for containing system180

parameters, logged parameters, connection points of each System and the actual connections181

between them. These connections are key for co-simulation, as they are used for defining the182

reciprocal influence of the controllers and FMUs. Finally, the Simulation class allows for a183

simulation run to be performed of all systems considering their interdependencies. This class184

also provides a method for storing the simulation results in a Pandas DataFrame.185

The third functionality concerns the RDM features. SOFIRpy wraps the package H5py to store186

the simulation results in HDF5 files. It also provides the option to store units of the time series187

in the attributes of the corresponding dataset in the HDF5 file. Beyond this basic data storage188

function, SOFIRpy provides further features for RDM. The HDF5 files used for storing results189

are structured on the highest level into two or more groups: one for the simulated entities, referred190

to as models, and one for each simulation run of these models stored in the file. In the models191

group, the binary files of the FMUs and the classes of custom controllers can be stored along192

with the source code of the classes. The group for one run contains the resulting time series of a193

simulation run, as well as datasets with the data for the configuration of the run and software194

dependencies for the simulation run. This is illustrated in Figure 1.195

Furthermore, each run group contains subgroups for each simulated model, both FMU and196

custom controller. These subgroups contain datasets with information on the connections of this197

model to other models, which parameters of the model are logged and the start values of the198

model for that particular run. Another dataset in the subgroup references the binary of the model.199

In the case of the Python models, there are two datasets: one referencing the binary and the other200

the source code of the class. This structure is illustrated in Figure 2.201

This structure and the stored information allows users to recreate the simulated models along202

with the run parameters and start values from the data stored in the HDF5 file. In this way, each203

simulation run can be fully reproduced from the stored data.204

2.3 Limitations205

The main functionality of SOFIRpy is the co-simulation of FMUs and custom written models.206

Accordingly, limitations mainly concern the FMU export and the RDM features. These will be207

discussed in the following.208

The first limitation is that SOFIRpy does not implement its own solver for FMUs. This means209

that it depends on either open source solvers, such as CVode, or proprietary solvers, such as210

Dassl from Dymola, being available and exported with the FMU for the simulation to work.211

There are several limitations regarding the RDM features. Firstly, the metadata stored with212

the HDF5 files are not standardised, i.e. they do not follow a specific schema. Selecting and213

implementing a specific metadata schema is left to the user, since SOFIRpy may be used in214
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directoryname\filename.h5
/

/models

/models/fmus

/models/fmus/fmu_hash

/models/python_classes

…/class_1_source_code_hash

…/class_1_instance_hash

…/class_2_ instance_ hash

/models/python_classes/source_code

/run

…/class_2 _source_code_hash

/models/python_classes/classes

/run/config

/run/dependencies

/run/simulation_results

/run/simulation_results/time_series

/run/models

/run/models/fmus

/run/models/python_models

…/class_1

…/class_2

…/fmu_name

Dataset

Group

Metadata

File

Figure 1: Structure of the HDF5 file.
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directoryname\filename.h5
/

/models

/run

/run/config

/run/dependencies

/run/simulation_results

/run/simulation_results/time_series

/run/models

/run/models/fmus

/run/models/python_models

/run/models/python_models/class_1

/run/models/python_models/class_2

…/fmu_name

Dataset

Group

Metadata

File

…/fmu_name/connections

…/fmu_name/parameters_to_log

…./fmu_name/start_values

…/fmu_name/reference

…/class_1/connections

…/class_1 /parameters_to_log

…./class_1 /start_values

…/class_1 /reference_model_class

…/class_1 /reference_source_code

. . .

Figure 2: Structure of the HDF5 file and contents of the sub-groups of the /run group. Each class

sub-group contains the same five datasets.
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different contexts, each of which may require a separate schema. Secondly, the metadata are not215

described using a standardised vocabulary. Vocabularies are context specific and accordingly,216

SOFIRpy leaves it to the users to decide which terms best describe the data they record using the217

software. Thirdly, the source code of the custom Python models is serialised for storage in the218

resulting datasets using cloudpickle [11]. Deserialising objects with cloudpickle requires219

the use of the same operating system used for serialising them. Deserialisation is only guaranteed220

for the exact same version of Python, though it has been shown to work when using different221

patch versions of Python. The latter issue can be addressed by using a tool for environment222

management, e.g. Poetry [12], VirtualEnvironment [13] or Anaconda [14] and providing the223

specifications of that environment. Furthermore, cloudpickle is not suitable for long-term224

object storage [11]. Since the source code of the classes is also stored, the code can be executed225

to recreate the simulation, though binaries of the classes may not be deserialisable in the long226

term.227

3 Code Structure228

The following section will present the code structure of SOFIRpy: the design concepts, ar-229

chitecture of the package and workflow. SOFIRpy is structured into 3 separate sub packages,230

coinciding with the functionalities mentioned in Section 2.2: fmu_export, simulation and231

rdm.232

3.1 fmu_export233

Modelica models created with both OpenModelica and Dymola can be exported to FMUs.234

For each export, a separate class is implemented that inherits from a base class, FmuExport.235

Both classes define an export_fmu method that encapsulates the logic required for exporting a236

Modelica model to an FMU.237

The OpenModelica export uses the OMPython package, which provides a method to do the238

export. In contrast, the Dymola export is more complex. In SOFIRpy, Dymola’s native scripting239

language is used. A script is dynamically generated to set the required parameters and export the240

Modelica model. This script is then executed using subprocess, a standard library in Python.241

3.2 simulation242

The UML diagram in Figure 3 provides an overview of the design for the simulation sub-243

package. At its core is the Simulator class. The class holds the instance attributes systems,244

connections and parameters_to_log.245

The systems attribute is a dictionary that maps the name of the system to an instance of the246

System class. The System class is designed to represent an entire physical system. An instance247

of the System class will hold an instance of the FMU class or the CustomPythonModel class,248

both of which inherit from the abstract base class SimulationEntity to ensure a standard-249

ised interface. The SimulationEntity class defines three abstract methods set_parameter,250

get_parameter_value, and do_step, which govern parameter manipulation, value retrieval,251

and simulation progression, respectively. The optional methods initialize, get_unit, and252
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SimulatorC

o systems: dict[str, System]

o Connections: list[Connections]

o Parameters_to_log: list[SystemParameter]
•simulate(stop_time: float, step_size: float, logging_step_size: float) −> DataFrame

ConnectionC

o input_point: SystemParameter

o output_point: SystemParameter

SystemParameterC

system_name: str

name: str

SystemC

simulation_entity: SimulationEntity

name: str

SimulationEntityA

•set_parameter(parameter_name: str, parameter_value: ParameterValue) −> None

•get_parameter_value(parameter_name: str) −> ParameterValue

•do_step (time: float) −> None

• initialize(start_values: dict[str, ParameterValue]) −> None

•get_unit(parameter_name: str) −> str | None

•conclude_simulation() −> None

FmuC

•set_parameter(parameter_name: str, parameter_value: ParameterValue) −> None

•get_parameter_value(parameter_name: str) −> ParameterValue

•do_step (time: float) −> None

CustomPythonModelC

•set_parameter(parameter_name: str, parameter_value: ParameterValue) −> None

•get_parameter_value(parameter_name: str) −> ParameterValue

•do_step (time: float) −> None

systems
1..*0..*0..*

parameters_to_logconnections

0..*
output

input

1

Figure 3: Simulation UML Diagramm.

Start

Initialise Models

Initialise Connections

Conclude Simulation Simulation Step

Set Model Inputs

Log Values

Stop

time = time + step_size

time ≥ stop_time

Figure 4: Simulation Flowchart.

conclude_simulation can be implemented. These methods define how to set start values,253

retrieve units, and perform necessary steps after the simulation has finished.254

The connections attribute contains information on how all simulation models are connected to255

each other and parameters_to_log defines which parameters/values should be logged.256

The steps performed during a simulation are shown in Figure 4. Before starting the simulation,257

the models to be simulated are initialised by calling each model’s initialize method and all258

connections between the models are initialised. Then the simulation loop starts. In each loop, one259

simulation step is performed in each model. Subsequently, the inputs in each model are set to the260

appropriate value. Next, values that should be logged are logged and finally, the simulation time261

is increased by the step size. If the simulation time is greater than the stop time, the simulation is262

concluded and stops.263
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3.3 rdm264

At the core of the rdm subpackage is the Run class. This class contains attributes for all data265

relevant to a simulation run and provides methods to manipulate the settings of the run. Addition-266

ally, the Run class provides the methods simulate, to_hdf5, and from_hdf5. The simulate267

method allows simulating the defined systems based on the current configuration. Upon comple-268

tion of the simulation, the results and all associated metadata can be stored in a HDF5 file via the269

to_hdf5 method. This method stores the data in the format outlined in Section 2.2. Each data270

entry in the Run class is serialised using custom serialisation methods, ensuring that the data is271

properly converted into a format suitable for storage in the HDF5 file. The from_hdf5 method,272

in turn, reconstructs the Run class from a specified HDF5 file and run name, deserialising the273

stored data and enabling the simulation to be rerun using the previously saved configuration.274

4 User Notes275

The following section will show how to engage with SOFIRpy, be it as a user with installation276

instructions and minimal examples or as a developer with instructions on how to contribute.277

4.1 Getting Started278

SOFIRpy is hosted on the package index PyPI and can be installed using pip with the following279

command:280

1 pip install sofirpy281

The SOFIRpy documentation includes an introduction with installation instructions, minimal282

examples for all functionalities and full API documentation. The documentation is publicly283

available [15].284

4.2 Minimal Example285

The code examples below illustrate how to co-simulate an FMU and a custom controller, and286

how to utilise the RDM features in SOFIRpy.287

In the first example, a PID controller is implemented as a custom controller for controlling a direct288

current (DC) motor of which there is already an FMU. After the PID controller is implemented,289

the connections between the controller and the DC motor are defined, as well as the start values290

and the parameters to be logged during the simulation. Finally, the simulation run of the PID291

controller controlling the DC motor is performed using the defined setup.292

1 from sofirpy import simulate, SimulationEntity293

2294

3 # define fmus to be simulated295

4 fmu_paths = {"DC_Motor": "path/to/fmu"}296

5297

6 # define custom models to be simulated298

7 # here a custom PID controller is implemeted299

8 class PID(SimulationEntity):300
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9 """Simple implementation of a discrete pid controller"""301

10 def do_step(self, time): ... # To be implemented302

11 def get_parameter_value(self, output_name): ... # To be303

implemented304

12 def set_parameter(self, parameter_name, parameter_value): ... # To305

be implemented306

13307

14 model_classes = {"pid": PID}308

15309

16 # define how the models are connected310

17 connections_config = {311

18 "DC_Motor": [312

19 {313

20 "parameter_name": "u",314

21 "connect_to_system": "pid",315

22 "connect_to_external_parameter": "u",316

23 }317

24 ],318

25 "pid": [319

26 {320

27 "parameter_name": "speed",321

28 "connect_to_system": "DC_Motor",322

29 "connect_to_external_parameter": "y",323

30 }324

31 ],325

32 }326

33327

34 # define start values for models328

35 start_values = {329

36 "DC_Motor": {"inertia.J": 2},330

37 "pid": {"K_p": 3,"K_i": 20,"K_d": 0.1},331

38 }332

39333

40 # define which variables to log334

41 parameters_to_log = {335

42 "DC_Motor": ["MotorTorque.tau"],336

43 "pid": ["u"],337

44 }338

45 results, units = simulate(339

46 stop_time=10,340

47 step_size=1e-3,341

48 fmu_paths=fmu_paths,342

49 model_classes=model_classes,343

50 connections_config=connections_config,344
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51 start_values=start_values,345

52 parameters_to_log=parameters_to_log,346

53 logging_step_size=1e-3,347

54 get_units=True,348

55 )349

The following minimal example of the RDM features shows how a simulation can be configured,350

run and stored in an HDF5 file. In a second step, the simulation run is loaded from the HDF5 file351

and a parameter is changed. After this, a second simulation is run with the changed parameter.352

1 from sofirpy import Run353

2354

3 run_name = "Run_1"355

4 model_classes = {"pid": PID}356

5 fmu_paths = {"DC_Motor": "path/to/fmu"}357

6 run = Run.from_config(358

7 run_name=run_name,359

8 stop_time=10,360

9 step_size=0.1,361

10 fmu_paths=fmu_paths,362

11 model_classes=model_classes,363

12 )364

13 run.simulate() # calls the simulate function with the defined config365

14 # accessing the results366

15 results = run.time_series367

16368

17 # storing the run inside the hdf5369

18 hdf5_path = "path/to/hdf5"370

19 run.to_hdf5(hdf5_path)371

20372

21 # loading the run from the hdf5373

22 run_loaded = Run.from_hdf5(run_name, hdf5_path)374

23375

24 # manipulating the config of a run, e.g. changing the stop time376

25 run_loaded.stop_time = 100377

26 # simulating the run with changed config378

27 run_loaded.simulate()379

4.3 Ensuring Code Quality380

Aside from being a tool for co-simulation, SOFIRpy is a demonstration example of how to381

write and document research software in the field of mechanical engineering for good scientific382

practice in RDM. Accordingly, great emphasis was placed on adhering to best practices in383

software development and ensuring comprehensive documentation. The used methods will be384

briefly presented.385
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4.3.1 Version Control and CI/CD386

Throughout the development of the package SOFIRpy, Git was used as a version control387

system. The package is hosted on a remote repository on GitHub. An automated CI/CD pipeline388

using GitHub Actions is implemented that contains static code analysis, testing, building the389

documentation, as well as publishing and releasing the package.390

Testing SOFIRpy is equipped with parametrised unit tests implemented with Pytest. The test391

routine is a part of its CI/CD pipeline. SOFIRpy currently has a test coverage of 80 %.392

Static Code Analysis Linting is a method for ensuring compliance of source code with style393

conventions and for detecting programmatic errors. SOFIRpy includes the linting tool Ruff394

among its optional dependencies for development, as well as in the automated testing pipeline.395

The tool is also used for automatic formatting of code, which facilitates reading the code for396

users and other developers.397

For improved documentation and for facilitating development, SOFIRpy uses the tool Mypy in398

strict mode for static type checking. SOFIRpy is fully typed.399

Pre-commit To ensure compliance with style guidelines in writing code, the SOFIRpy reposi-400

tory comes with a configuration file for pre-commit hooks. The package Pre-commit is a tool401

for configuring pre-commit hooks for version control with git. Before each commit, the source402

code gets checked for violations of the configured commit hooks.403

4.3.2 Documentation404

Comprehensive use is made of docstrings throughout the source code of the package for doc-405

umenting the functionality of classes and methods. Docstrings are consistently written in the406

Google format.407

The docstrings are used for automatically building the API documentation. The documentation408

of the package SOFIRpy is publicly available [15]. Apart from the API documentation, it also409

includes installation instructions and the minimal examples presented above, as well as further410

demonstrations of the features of SOFIRpy. The documentation is built using the package411

Sphinx.412

4.3.3 Packaging and Publishing413

The project SOFIRpy has been packaged and released. It is published on the public repository414

PyPI [16]. Not only does this make the package easily installable through Pip, it also ensures415

compliance with the same standards in metadata, declaration of dependencies, version history,416

etc., that the most common Python packages follow. The release of new versions of SOFIRpy is417

also automated through GitHub actions.418

To summarise, SOFIRpy is a fully developed software package that follows common practices419

in software development. It is a package of research software with a typical application in the420

field of mechanical and control engineering. These two aspects together show how SOFIRpy421
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can serve as an orientation example for engineering scientists without a background in software422

development who frequently need to write research software.423

4.4 Maintenance and How to Contribute424

SOFIRpy is maintained in the publicly accessible GitHub repository. It is possible to submit425

issues and contribute to the project. Detailed guidelines on how to contribute are provided in the426

project’s documentation [15].427

5 Current Status and Outlook428

SOFIRpy is currently a stable Python package that adheres to common domain and language429

best practices. It offers its three core functionalities: (i) exporting Modelica models as an FMU,430

(ii) co-simulating FMUs with custom written controllers in Python, (iii) storing data and metadata431

of the simulation in a HDF5 file and reproducing simulations from the stored data.432

As discussed in Section 2.3, the RDM functionalities are not as feature-rich as may be expected433

considering the current state of development in the RDM community. However, this is a design434

choice made in the development of SOFIRpy, as this allows greater flexibility for users. Further435

developments in this area may be to ensure a seamless integration with other tools that focus436

on RDM methods for HDF5 files and use of standardised metadata schemas and controlled437

vocabularies, e.g. H5RDMtoolbox [17].438

An aspect for future development is to further generalise the application of SOFIRpy. Currently,439

the package supports co-simulation of FMUs as models of physical systems, e.g. fluid systems,440

and custom written models for controlling them. The package may be extended to enable users441

to substitute the FMUs with actual physical systems. This will broaden the utility of the software,442

allowing its use as a framework for conducting physical experiments as well as simulations. A443

further possible extension is to expose more functions to the user with the purpose of facilitating444

the use of SOFIRpy, e.g. when using reinforcement learning methods for controllers.445
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