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Abstract.

This paper presents lessons learned from the creation and management of FAIR (Findable,

Accessible, Interoperable, Reusable) data and metadata in two recent robotics projects, in

order to derive principles and building blocks for collaborative (meta)data management in field

research. First, an inventory of metadata purposes and topics is presented, distinguishing

between executive metadata necessary for data producers, and rich reusable metadata

satisfying the FAIR principles. A model of the metadata creation process is developed and

compared with the Metadata4Ing ontology. Second, social aspects of FAIR research data

management (RDM) are discussed in the project context and beyond. The primary tasks of a

FAIR research data manager are analyzed in three domains: data production team, research

domain, and FAIR RDM community. Third, some improvements on prominent data lifecycle

models are proposed to support the requirements of collaborative RDM, and to foster an

iterative improvement of RDM systems.

1 Introduction1

1.1 Motivation2

The FAIR principles are formulated in generic terms and without reference to any particular3

scientific discipline [1]. According to Jacobsen et al. (2020), ”[t]his has likely contributed to4

[their] broad adoption [...], because individual stakeholder communities can implement their5

own FAIR solutions. However, it has also resulted in inconsistent interpretations that carry the6

risk of leading to incompatible implementations. Thus, [...] for true interoperability we need to7

support convergence in implementation choices that are widely accessible and (re)-usable.” [2]8

Communities who wish to develop their own FAIR conventions may greatly benefit from9
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successful real-world examples that allow researchers and practitioners to identify, evaluate, and10

select best practices for research data management (RDM). However, the application of RDM in11

practical applications is still lacking in literature. Many approaches and models exist in theory,12

but their value to the community remains low if their practice is not systematically examined.13

This paper presents lessons learned from the creation and management of FAIR data and metadata14

in two recent robotics field research projects, RoBivaL and DeeperSense, conducted at the15

Robotics Innovation Center (RIC) of the German Research Institute for Artificial Intelligence16

(DFKI) [3] [4]. The paper is an extended and revised version of a presentation given at the17

NFDI4Ing Conference 2023 [5].18

We chose to present RoBivaL and DeeperSense together for two complementary reasons. On19

the one hand, their commonalities allow us to generalize RDM principles to some degree in20

certain circumstances: Both projects are field studies, conducted over extended periods of time21

by diverse research teams from multiple institutions and disciplines. Their differences, on the22

other hand, allow us to examine the application of RDM principles in different research scenarios:23

RoBivaL is a terrestrial robotics project studying the performances of different hardware systems24

at a single location in the context of agriculture. DeeperSense is an underwater robotics project25

developing an AI for the translation of sonar outputs into camera-like images based on training26

data collected both at a laboratory and at multiple field locations.27

Openly available datasets are crucial to advancing the field of robotics. One reason is that robotics28

research often requires access to specialized hardware, sensors, and environments. Making high-29

quality data accessible to more researchers, including those without the means to collect such30

data on their own, fosters innovation from a wider range of perspectives. Furthermore, open31

datasets provide common ground for the community to develop and benchmark algorithms32

collaboratively on standardized data.33

Our discussion of RDM, however, is not supposed to be applicable just to robotics. In principle,34

our findings can be applied to any collaborative (field) research project employing humans and35

technical systems for data acquisition in multiple steps and iterations. The purpose of our study36

is to derive requirements and strategies for the creation and management of ”rich” metadata in37

the FAIR sense.38

1.2 Outline39

Section 2 presents related work on FAIR RDM in general, on open data in robotics in particular,40

and on formal knowledge representation in robotics.41

Section 3 features brief summaries of RoBivaL and DeeperSense. We present their overall project42

objectives and contrast their base data requirements from a high-level perspective.43

The main body of the paper is divided into three parts (Sections 4 - 6). Specific desiderata44

and additional related work are introduced at the beginning of each part if necessary. The45

models and concepts presented in these parts were extracted from the experience in RoBivaL46

and DeeperSense and shall be applied in future projects.47

The first main part (Section 4) discusses the content dimension of FAIR RDM. We distinguish48

between executive metadata necessary for producers to achieve their project goals, and reusable49

ing.grid, 2025 2



RESEARCH ARTICLE Collaborative creation and management of rich FAIR metadata

metadata necessary for reusers to satisfy the FAIR principles. We introduce this distinction into50

the FAIR data debate, because we believe that data producers are more likely to adopt FAIR51

principles if the specific needs of producers are taken into account by the FAIR community.52

Both metadata types are illustrated with examples from RoBivaL and DeeperSense. Further, this53

section introduces base elements for a model of the metadata creation process at the micro level54

in the context of collaborative metadata management. We relate our model to the ”processing55

step” class of the Metadata4Ing (M4I) ontology. Though M4I acknowledges the existence of56

metadata, it does not appear to address the process of metadata creation.57

The second main part (Section 5) expands the distinction between different stakeholder groups58

from the previous section and explores the social dimension of collaborative FAIR RDM more59

broadly. We argue that a FAIR research data manager acts as a link between three social domains60

where they perform different primary tasks. We are not aware of a discussion about the social61

implications of FAIR RDM, but we believe such a discussion to be indispensable for a definition62

of the FAIR data manager role.63

The third main part (Section 6) examines the time dimension of collaborative and iterative FAIR64

RDM at the macro level. Based on a critical appraisal of prominent data lifecycle models, we65

suggest a model of a self-improving data lifecycle geared towards collaborative and iterative66

RDM. We introduce a data provision phase which is necessary for internal collaboration. Fur-67

ther, we introduce an evaluation phase at the end of the lifecycle complementing the planning68

phase at its beginning, to foster iterative improvement of the data management system. Lastly,69

we recognize that planning and evaluation are different kinds of activities than data creation,70

provision, processing, publishing, etc., which gives rise to a lifecycle model with two nested71

loops. Our model is illustrated with lessons learned from RoBivaL and DeeperSense.72

2 Related work73

This section presents some recent developments in open data and FAIR RDM with applications74

in robotics, and on formal knowledge representation in robotics.75

The need for large-scale, real-world datasets in robotics is highlighted by the rise of Robotics76

Foundation Models (RFMs) [6]. Extensive multimodal training data can lead to high-level task77

performance in many different scenarios, as illustrated by the RT model class presented by78

Brohan et al. (2023) [7]. The RT-1-X model was trained on the Open X-Embodiment dataset,79

developed and published by Google DeepMind in 2024 in collaboration with over 20 research80

institutions [8] [9]. This initiative demonstrates the benefits of shared open data. Still, according81

to Firoozi et al. (2024), the scarcity of robot-relevant training data remains a major open research82

challenge in the improvement of RFMs [10].83

Robotics-enabled marine research has seen some advancements towards FAIR RDM. Schoening84

et al. (2022) observe that published marine image datasets have been lacking metadata to describe85

their high technical heterogeneity; the authors propose a concept for image FAIR digital objects86

(iFDOs) as a remedy [11]. Motta et al. (2023) present a method for the creation of FAIR marine87

robotic telemetry data and metadata about marine robotic missions; they observe a general lack of88

controlled vocabularies in robotics [12]. In the context of space robotics, Dominguez et al. (2020)89
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developed a modular framework for multisensor data fusion including a suite of data management90

tools; their approach for describing complex data processing systems might feed into FAIR91

metadata components for robotics [13]. Arundel et al. (2023) offer a data management case92

study focused on conveyance of big data over multiple stages; though motivated by geospatial93

data processing, their methods seem applicable to many domains, including robotics [14].94

Several initiatives in science and industry are working to represent robotics knowledge using for-95

mal ontologies and terminologies. Olivares et al. (2019) review five ontology-based approaches96

to autonomous robotics and quote four additional ontological efforts in robotics that either don’t97

address autonomy or lack relevant qualities [15]. The IEEE 1872 group of standards comprises98

six ontologies which were released between 2015 and 2024 [16]–[18]. They define more than99

100 terms addressing general robotics concepts, robot parts, pose, tasks, and autonomy. An100

additional IEEE ontology about reasoning on multiple robots is in development [19]. A parallel101

standardization enterprise at the terminological level are the ISO vocabularies for robotics [20]102

and for mobile robots [21]. Though ISO 8373 is a normative reference in IEEE 1872, there are103

considerable differences which must be navigated by practitioners. The ROS middleware offers104

the URDF specification for a formal description of kinematic and dynamic aspects of individual105

robots that consist of rigid links connected by joints [22]. A proposal to cure some shortcomings106

and limitations of URDF has not yet been addressed [23]. Considering applications of ontologies107

and terminologies in robotics research, Jorge et al. (2015) evaluate the POS ontology in a use108

case where heterogeneous robots and humans interact in a manufacturing task [24]. Neto et al.109

(2019) apply the CORAontology in a simulated robotics reconnaissance mission with interaction110

between autonomous aerial and ground robots [25]. Yüksel (2023) explores the application of111

ontologies at the robot component level for the automated design of robotic systems in relation112

to robot tasks and capabilities; the work introduces the Korcut ontology family [26].113

DeeperSense and RoBivaL did not employ any formal ontologies or terminologies for devel-114

opment or data management. This is in line with the usual practice in the respective research115

teams. Applying ontologies on top of the primary project requirements would have posed a major116

challenge exceeding the available resources. Formal knowledge representation with ontologies117

and terminologies will therefore be explored in future work.118

3 Project summaries119

This section gives brief summaries of the projects RoBivaL and DeeperSense, focusing on120

general project objectives and the base data that was created.121

3.1 RoBivaL122

The project RoBivaL [3] [27] was conducted between August 2021 and October 2023 by an123

interdisciplinary and multi-institutional team of roboticists and agriculture researchers in Ger-124

many. The project compared different robot locomotion concepts both from space research and125

agricultural applications on the basis of experiments conducted under agricultural conditions.126

The goal was to promote knowledge and technology transfer between space and agriculture127

research. While the experiment designs were inspired by the standards ISO 18646-1 [28] and128

ISO 18646-2 [29], the environmental properties were adapted to the agricultural context, and the129
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main evaluation focus was on soil interaction. Four robots were used: Two having their origins130

in space applications, the other two developed for agriculture. The robots were subjected to131

six experiments addressing different agricultural challenges and requirements. Soil conditions132

were controlled and varied on the two dimensions moisture (dry, moist, wet) and density (tilled,133

compacted). Figure 1 gives an impression of selected experiments and robots in the field.134

(a) (b) (c)

Figure 1: Selected RoBivaL field experiments and robots: (a) Turn around with SherpaTT, (b)

Straight travel with Naio Oz, (c) Sill crossing with ARTEMIS. © DFKI, Malte Wirkus. License: CC BY

4.0 International

Field conditions and robot behavior were monitored with various sensors and measuring devices,135

partly on the robots and partly in the field, in order to document the experiment execution and136

to determine the robot performance. The data capturing devices, their roles and deployments137

are summarized in Table 1. (Video camera and Lidar on the system are greyed out, because,138

although available, they were not used in the project.) The entire dataset including comprehensive139

metadata is publicly available on the Zenodo platform [30].140

Device on System Device on System

and in Field

Device in Field

System Monitoring • IMU

• Force sensor

• RTK-GPS • Stopwatch

• Compass

System and Field

Monitoring
• Video camera

• Ruler

Field Monitoring • Video camera

• Lidar

• Tilt laser scanner

• Penetrometer

• Moisture meter

Table 1: RoBivaL data capturing devices by purpose and deployment

3.2 DeeperSense141

The project DeeperSense [4] [31] was conducted between January 2021 and December 2023 by142

an international, interdisciplinary, and multi-institutional team of researchers and domain experts143

in Germany, Spain, and Israel. This paper focuses on the German use case, which employed144

roboticists, sensor experts, and technical divers. The objective was to improve the safety of the145

divers, who work under dangerous conditions and therefore require constant monitoring and146

assistance. Existing safety systems rely on cameras, which is a problem in turbid water that limits147

visibility – just when the divers most need outside support. Sonars are more robust to turbidity,148

but conventional sonar output is difficult to interpret. DeeperSense therefore developed a neural149

network which translates sonar output into images that appear camera-like, thus combining the150

best aspects of both modalities. Figure 2 illustrates the sonar-to-image translation.151
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(a) real camera (b) real sonar (c) predicted from sonar

Figure 2: DeeperSense sonar-to-camera translation. The pair (a) and (b) is a training input sample.

The generated image (c) is predicted in production from (b) alone. © DFKI, Bilal Wehbe. License:

CC BY 4.0 International

To gather training data, divers performing typical work tasks were recorded underwater with152

sonar and camera simultaneously. Figure 3 shows the training data collection setup schematically.153

Figure 3: DeeperSense training data collection setup. © DFKI, Bilal Wehbe. License: CC BY 4.0

International

For the neural network to be able to handle different types and degrees of turbidity, the training154

data had to be varied accordingly. Since this is difficult to establish and control efficiently at155

a single time and location, data was captured during six sessions at four different locations,156

covering inside and outside conditions, natural and artificial water bodies, and different seasons.157

Figure 4 gives an impression of the field locations.158

Figure 4: DeeperSense field locations. From left to right: Martime Exploration Hall, Bremen; Chalk

Lake, Hemmoor; Tank Wash Basin, Neu-Ulm; Starnberg Lake, Percha. © DFKI, Bilal Wehbe /

Christian Backe. License: CC BY 4.0 International

Selected parts of the sensor data were published on the Zenodo platform [32] [33]. Due to the159

size of the sensor data, it is currently impractical to make the entire corpus available online.160

Instead, the metadata was published as a standalone database [34], allowing researchers to select161

portions relevant for their use cases, which are made available on demand. This is an effort to162

comply with the FAIR principle A2 to make metadata accessible independently of the base data.163

164
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3.3 Comparison165

Table 2 summarizes and constrasts the data-related properties of RoBival and DeeperSense as166

presented in Sections 3.1 and 3.2. An immediate takeaway is that the scope and form of the base167

data, its purpose and handling can be quite different between projects even at a single institute.168

A data management solution should be flexible enough to accommodate such variance.169

RoBivaL DeeperSense

Objective and

method
• Compare robot performances us-

ing statistics and visualization

• Train neural network using mul-

timodal machine learning

Base data • Ten distributed sensor outputs

and manual measurements ob-

serving robot behavior and field

characteristics before, during,

and after an experiment

• Indefinite stream of synchro-

nized, co-located camera and

sonar snapshots showing divers

working underwater

Data acquisition

in the field
• Multiple sessions at one location

• Deliberate field preparation

• Multiple sessions and locations

• Adapt to given field conditions

Table 2: Summary of data-related project properties of RoBival and DeeperSense

4 Content dimension: Executive metadata and rich reusable metadata170

This section discusses the content dimension of metadata creation and management in RoBivaL171

and DeeperSense from the perspectives of data producers on the one hand, and potential reusers172

as characterized by the FAIR principles on the other. Subsection 4.1 introduces necessary173

background about high-level purposes of metadata, metadata semantics in the context of robotics174

and engineering in general, and the concept of metadata ”richness” according to the FAIR175

principles. Subsection 4.2 lays out a collection ofmetadata topics fromRoBivaLandDeeperSense176

for different purposes, and divides it into executive metadata relevant for producers and reusable177

metadata for public consumers based on the different motives of both parties. This analysis178

foreshadows the discussion of social aspects of metadata management in Section 5. Subsection179

4.3 attempts to model the process of metadata creation abstractly and at the micro level for180

production purposes. We illustrate our model with examples from DeeperSense and RoBivaL,181

and compare it to the communication-oriented ”processing step” class from the Metadata4Ing182

(M4I) ontology.183

4.1 Metadata purposes, semantics, and richness184

Virtually every general metadata definition starts with the assertion that metadata is ”data about185

data” [35]–[39]. A common purpose-based classification distinguishes at a high level between186

descriptive, administrative, and structural metadata [40]–[42]: Descriptive metadata ”enables187

discovery, identification, and selection of resources”, administrative metadata ”facilitates the188

management of resources”, structural metadata ”describes relationships among various parts of a189

resource”, and is ”generally used in machine processing” [42].190

There are many domain-specific approaches to model metadata semantics. For the communica-191

tion of metadata in engineering disciplines including robotics, the NFDI4Ing community has192
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developed the Metadata4Ing (M4I) ontology [43]–[45]. It features a generalized process model,193

centered around the ”processing step” class. This is an attempt at communicating multi-stage194

data processing to satisfy the FAIR principle R1.2 of detailed provenance tracking. We compare195

the M4I processing step class with our own metadata creation process model in Section 4.3.196

• F1. (meta)data are assigned a globally unique and persistent identifier

• F2. data are described with rich metadata (defined by R1 below)

• F3. metadata clearly and explicitly include the identifier of the data it describes

• F4. (meta)data are registered or indexed in a searchable resource

• A1. (meta)data are retrievable by their identifier using a standardized communications

protocol

• A1.1 the protocol is open, free, and universally implementable

• A1.2 the protocol allows for an authentication and authorization procedure, where necessary

• A2. metadata are accessible, even when the data are no longer available

• I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowl-

edge representation.

• I2. (meta)data use vocabularies that follow FAIR principles

• I3. (meta)data include qualified references to other (meta)data

• R1. meta(data) are richly described with a plurality of accurate and relevant attributes

• R1.1. (meta)data are released with a clear and accessible data usage license

• R1.2. (meta)data are associated with detailed provenance

• R1.3. (meta)data meet domain-relevant community standards

Table 3: The FAIR principles [1]

The FAIR principles [1] (see Table 3) require metadata to include the identifier of the base197

data (principle F3) and to be independently accessible (A2). Special emphasis is put on ”rich”198

metadata. The term is associated with findability (F2), but defined in the context of reusability199

(R1). In fact, from the formulation of R1 it appears that rich metadata is the essence of reusability.200

Its definition is left vague, which is likely intentional to allow the concept to be applied in various201

domains. Richness implies ”a plurality of accurate and relevant attributes”. The only specific202

attributes mentioned are a data usage license (R1.1) and provenance (R1.2). Further attributes203

must ”meet domain-relevant community standards” (R1.3). In our view, this means it is both204

possible and necessary to develop community-specific interpretations of metadata richness. The205

focus on reusability implies that richness must be explained from a user perspective.206

4.2 Executive metadata and reusable metadata207

While the FAIR principles promote the development of metadata for data reusers, data producers208

already create and manage metadata routinely for their own purposes. This does not imply that209

they would describe their own practice in these terms or use specific tools and methods. It means210

that some forms of metadata creation and management are just an innate part of being an effective211

researcher. Examples will be given below. What is the relationship between the executive212

metadata necessary for data production and the rich FAIR metadata supporting, enabling, or213

facilitating data reuse? This question has a content aspect and a form aspect: Which metadata214

topics are relevant for producers or reusers? And which formal requirements are demanded by215

either group? Since these questions address two different stakeholders, they foreshadow the216

discussion of social aspects of FAIR RDM in Section 5.217
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Both projects RoBivaL DeeperSense

Producer • Logistics (DAS)

• Production standards,

tools, workflows (A)

• Team coordination (A)

• Errors (DAS)

• Robot maintenance and

development (A)

• High performance

computing (A)

Producer

and

Reuser

• Field spec. (DAS)

• Sensor spec. (DS)

• Software spec. (DA)

• Data format (DS)

• Data statistics (A)

• Related work (D)

• Experiment spec. (D)

• Robot spec. (D)

• Key robot properties,

perf. metrics (D)

• Measuring methods (D)

• Source categorization

(DAS)

• Machine learning

methodology (DAS)

• Scene description (D)

• Sensor configuration

(DS)

Reuser • DOI, URL (A)

• Usage license (A)

• Provenance (A)

• Public ontology (DS)

• Extra use cases (DA)

• Tag unused data: by-

catch, invalid runs (D)

• Typical examples (D)

Table 4: Metadata topics relevant for producers or reusers in RoBivaL and DeeperSense.

Predominant purposes: descriptive (D), administrative (A), or structural (S).

Table 4 presents the metadata topics of RoBivaL and DeeperSense categorized by project and by218

relevance for producers or reusers. Intersections are possible on both dimensions. Each topic is219

labeled with its dominant purpose(s), i.e., descriptive (D), administrative (A), or structural (S).220

The assignment of topics to producers or reusers is guided by the assumption that either group has221

a different primary motive: Producers want a correct execution of their project plan to achieve222

their primary research goal. Reusers want a sufficient understanding of the base data to assess its223

utility, and to integrate it into their own work flow. Our assumption about producers is primarily224

based on our personal experience, i.e., they reflect the motives and requirements prevalent in225

the two examined projects and within our institutions more generally. We believe that these226

assumptions are neither surprising nor uncommon. The point here is to observe the contrast227

between producers and reusers. Our assumption about reusers is based on our interpretation of228

the FAIR principles. Both assumptions are further substantiated in Section 5.229

The different motives also affect the formal requirements. Data producers care less if all metadata230

is specified and captured explicitely and formally, but tolerate tacit expert knowledge, code231

logic, informal communication, etc. For the sake of efficiency and expediency, they may limit232

content and form of metadata to what is essential to their needs. Reusers on the other hand233

require all metadata to be explicit, since they lack the immediate access to the creation context234

that producers have. To support efficient machine processing, metadata must be formalized. In235

order to cover a broad range of possible reuse cases, it must be rich in the FAIR sense.236

4.3 Base elements of the metadata creation process237

This section analyzes the process of metadata creation and derives some process-related metadata238

categories. The matter is treated abstractly and at the micro level, i.e., with regard to individual239

data elements; the big picture of the data lifecycle is discussed in Section 6. The analysis yields240
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elements for the design of metadata production workflows. This is useful in a collaborative241

setting with a division of labor, where responsibilities must be communicated effectively.242

The data flow diagram in Figure 5 illustrates the first order of metadata creation on a single data243

processing stage. Base data processing is represented vertically from top to bottom, metadata244

processing horizontally from left to right. The Output represents a piece of base data which is245

generated by some Procedure. Output and Procedure are the subjects of metadata. For both,246

metadata creation has two phases: Before the subject exists, it is designed; after it exists, it may247

be documented. The design is metadata that is injected into the Procedure; the documentation is248

metadata that is extracted either from the Procedure or from the Output.249

Figure 5: Data flow on a single stage of first order metadata creation. Rounded box: Process.

Angled box: (Meta)data. Blue: Data. Green: Metadata. © DFKI, Christian Backe. License: CC BY

4.0 International

The entire model can be stacked vertically to represent multi-stage data transformation, i.e., the250

Procedure may receive output of a previous stage as its input, the Output may serve as input to251

another procedure on a subsequent stage. This model facilitates division of labor by modularizing252

metadata both in the content domain (distinguishing metadata subjects Procedure and Output)253

and across time (distinguishing design and documentation phase).254

Table 5 lists examples for each of the four first order metadata categories taken from the255

DeeperSense project. They are related to the same Procedure (”Capture camera and sonar256

images of a diver”) and corresponding Output (”Logfiles with raw camera and sonar data”).257

Procedure-related Output-related

Injected • Middleware (ROS 2.0)

• Start time

• Raw data structure (”topic”)

• File name (Identifier)

Extracted • Scene description

• Event documentation

• Number of recorded samples

• File size

Table 5: Examples of the four first order metadata categories from the DeeperSense project

The assertion that metadata is data, as mentionend in Section 4.1, implies that metadata creation258

may be recursive: Higher orders of metadata can treat metadata of lower orders as their base259

data. Visually, this means we can stack the first order metadata creation model not just vertically,260

but also horizontally. This is illustrated in Figure 6. It contains a condensed version of Figure 5:261

The process ”Create MD” represents all four metadata creation processes of the first order, which262

are applied to the base Procedure and Output. ”First order MD” represents all four first order263
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metadata types. The recursion recognizes that ”Create MD” and ”First order MD” themselves264

are a procedure-and-output pair, hence they become subjects of meta-metadata creation.265

Figure 6: Recursive creation of higher order metadata. © DFKI, Christian Backe. License: CC BY

4.0 International

Table 6 gives two sets of generic examples for higher order metadata on multiple levels. The266

first example features pieces of literal base data and metadata: A speed measurement is taken at267

a certain time; the time stamp formatting is expressed in C string format notation; syntax and268

semantics of this formatting are governed by an ISO standard. The second example has a similar269

application pattern, but references files, which support structured data and semantic networking.270

Base data Metadata Meta-Metadata Meta-Meta-Metadata

5.3 m/s 2023-09-27 09:37:51 %Y-%m-%d %H:%M:%S ISO 8601

camera.mp4 metadata.json schema.json https://json-schema.org

Table 6: Generic examples of higher order metadata

How does our metadata process model compare to the processing step class of the Metadata4Ing271

(M4I) ontology depicted in Figure 7? The M4I model acknowledges that each data output is272

generated by a process, and that data processing may be chained, which corresponds to the273

vertical direction of our model. But the M4I model does not appear to cover the process of274

metadata creation itself, i.e., our model’s horizontal direction (injected vs. extracted metadata,275

higher order metadata). We assume this absence is at least partly a result of the purpose of276

the M4I model, which is communication of metadata to data consumers after the base data277

and metadata have been created. As mentioned above, the modularization of metadata in our278

model serves to design workflows for metadata creation by a data production team during project279

execution. A further difference between the M4I processing step and our model is that the former280

specifies a fixed set of attributes, while the latter is agnostic in this regard. Finally, the M4I281

processing step model provides the opportunity to encapsulate multiple substeps into a single282

step of larger scale. So far, our model does not feature a similar means of abstraction.283

5 Social dimension: Collaborative FAIR data management in field research284

This section discusses the social dimension of metadata creation and management from the285

perspective of a research data manager who follows FAIR principles. We argue that a FAIR286

manager acts as a link between three social domains, where they perform different primary tasks.287
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Figure 7: Processing step class of the Metadata4Ing ontology [43]. © Metadata4Ing Workgroup.

License: CC BY 4.0 International

5.1 Collaboration with the data production team288

The first social domain is the data production team. Here, the primary task of any data manager289

(irrespective of FAIRness considerations) is collaboration.290

Collaborative research in general is challenging, because it involves a multitude of people who291

must be coordinated and accomodated. If they come from different disciplines and institutions,292

they may have different motivations, goals, expertise, responsibilities, standards, and practices.293

These individual attributes may not be equally transparent for everybody, and not be equally294

present in everyone’s mind, which can complicate intra-group communication.295

Collaborative field research is particularly challenging: The pressure to perform is very high,296

because there are limited opportunities to go into the field; field conditions can be difficult297

and unpredictable, which often leads to unforeseen problems; equipment and people are put to298

unusual stress. The main priority is to get all people and systems to work at all at the designated299

time and place, and to capture the primary data that serves the project goal. This often requires300

improvisation and adaptation, because prototype systems may break or deviate from specification,301

and the captured data may not match earlier expectations. Figure 8 illustrates these notions in302

the context of DeeperSense.303

This assessment has two immediate implications for effective RDM in field research: First, RDM304

must be reliable and unobtrusive. A field research team wants their RDM to ease the effort, not305

stand in the way or cause extra concerns. Second, RDM must capture unforeseen events, so they306

can be factored into the preparation of future field missions.307

5.2 Mediation between producers and reusers308

The previous section dealt with RDM in general. For a FAIR data manager in particular, there is309

a second social domain, namely the larger research domain. Here, their primary task is mediation310

between conflicting requirements of their data production team on the one hand, and potential311
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Figure 8: Field team work in DeeperSense. On the last day of data collection, the team is on a boat

on a lake, gathering a critical piece of data necessary for the final demonstration event. The

underwater system keeps failing. Error messages on the computer screens are difficult to read due

to the glaring sun. © DFKI, Christian Backe. License: CC BY 4.0 International

data reusers (as characterized by the FAIR principles) on the other.312

We hinted at this conflict in Section 4.2 and can fully express it in light of Section 5.1: Reusers313

require explicit, formal, rich metadata to thoroughly understand the data that is foreign to them,314

easily interface with it using machines, and have it serve a broad spectrum of potential use cases.315

But this demands extra effort from the producers, who not only have the privilege of being more316

implicit, informal, and brief in their internal communication, but who may actually be forced to317

cut corners, especially under field conditions, in order to reach their primary research goal.318

Table 7 summarizes this proposition and adds two aspects derived from experience in RoBivaL319

and DeeperSense: In a collaborative setting with division of labor, executive metadata may be320

distributed over many places convient for different contributors; to become reusable, it must be321

consolidated. While research is ongoing, the executive metadata design may need to evolve to322

adapt to changing circumstances; reusers prefer reliable APIs.323

Data producers Data reusers

Research execution Data understanding and interoperation

Tacit common knowledge Explicit metadata files

Ad-hoc communication Formal specification, Ontologies

Single actual use case Several potential use cases

Distributed information Coherent information

Flexible, evolving designs Static APIs (keywords, structures)

Table 7: Different priorities and requirements of data producers and reusers

The conflicting priorities and requirements of data producers and reusers have two implications324

for a FAIR research data manager: First, they must motivate their team to apply the extra effort.325

One possible incentive may be that today’s producers are their own reusers tomorrow, so the326

investment in more elaborate metadata will pay off directly towards themselves. There is an327

indirect version of this: By creating metadata they would be happy to receive if they were reusers,328

producers influence the standards of their community to their own benefit. Another incentive may329
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be increased impact of their research if the underlying data is broadly adopted in the community.330

A second implication is that FAIR research data managers must design the workflow of their331

team such that the extra effort necessary to satisfy reuser requirements does not coincide with332

peak effort towards the primary research goal, because the latter will always have precedence.333

5.3 Standardization in the FAIR RDM community334

The third social domain for a FAIR research data manager is the FAIR RDM community. Here,335

their primary task is to participate in the standardization of FAIR practices in a particular research336

domain and maybe across domains. We believe the outcome of this activity can be conceptualized337

as higher order metadata.338

From a purely theoretical perspective, the metadata recursion could go on to unlimited orders.339

But in practice, of course, a cut-off is made, from which on the participants (i.e., data producers340

either among themselves or in relation to reusers) regard all higher metadata orders as common341

knowledge to be infered from context or prior convention. Still, the communication relies in342

principle on the assumption that all higher metadata orders could be delivered explicitly. One343

core role of the FAIR RDM community is to underwrite this assumption, i.e., to work towards a344

codification of common knowledge (including standards and open vocabularies) to which all345

participants can refer in their communication.346

6 Time dimension: A self-improving data lifecycle347

This section divides FAIR research data management into different tasks and organizes them348

across time. Subsection 6.1 discusses the concept of a data lifecycle and proposes some modifica-349

tions to the type of lifecycle used by NFDI4Ing and similar parties. The two main modifications350

are the introduction of an internal data provision phase necessary for collaborative research, and351

the introduction of an evaluation phase to drive an iterative improvement of the RDM system.352

Subsection 6.2 presents some lessons learned from RoBivaL and DeeperSense in each phase.353

6.1 Model of a self-improving data lifecycle354

There is no consensus which phases constitute a data lifecycle and how the phases shall be ordered.355

In their survey of 76 data lifecycles, Shah et al. identify at least 14 phases [46]. NFDI4Ing uses356

a model with six phases, named Planning, Production, Analysis, Storage, Access, and Re-Use357

[47]. It is similar to other six-phase models prevalent in the FAIR RDM community [48]–[50]358

but there are still differences about the naming and ordering of the phases. These models have359

two shortcomings regarding their application to collaborative and iterative research.360

First, while there is a phase in these models near the end of the cycle for making data available361

externally to the public (called ”Publication”, ”Access”, ”Sharing”, or ”Disclosure”), there362

is no equivalent phase dedicated to making the data available internally to the research team363

immediately after creation. In our experience, such a phase is necessary in collaborative research,364

and it has different requirements than the publication phase. We propose to call it Provision.365

Second, almost all phases are actions that apply to data (data is produced, analyzed, ...), except366

for Planning which is the only phase that applies to other actions (production is planned, analysis367
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is planned, ...). Another oddity about Planning is that it has no corresponding phase for looking368

into the past. In iterative research, comparing how things were planned to how they turned out369

would enable an iterative improvement of the RDM system. Since our research is in fact iterative,370

such a self-improving data lifecycle would be welcome. Therefore, we propose two additional371

phases called Execution and Evaluation. Together with Provision, they apply to each data-related372

action and thus form a separate loop nested with the data-related loop.373

In summary, our proposed model has six data-related phases: Creation, Provision, Processing,374

Publication, Reuse, and Archiving. Each of these is divided into three process-related phases:375

Planning, Execution, and Evaluation. The model is illustrated in Figure 9.376

Figure 9: Self-improving nested data lifecycle. © DFKI, Christian Backe. License: CC BY 4.0

International

The term Creation is chosen over Collection or Acquisition to emphasize the designed and377

fabricated nature of data and metadata. The broader term Processing is preferable over the378

narrow term Analysis, because we encounter a range of data processing activities in our practice,379

both primary (e.g. machine learning model development is synthesis, rather than analysis) and380

secondary (e.g., data cleaning, fusion, performance tuning, or quality assurance). The term381

Planning is to include Preparation. A single word is used here for brevity, but one should be382

aware that it does not signify purely cerebral activity, but also, e.g., handling of hardware.383

6.2 Lessons learned from RoBivaL and DeeperSense384

This section serves to illustrate the data lifecycle model discussed in Section 6.1 by presenting385

lessons learned in the different lifecycle phases of RoBivaL and DeeperSense. Many of the386

lessons are derived from failures, either to perform a task or to anticipate a challenge. Due to387

space constraints, we focus on consequences and leave specifics of the failures mostly implicit.388

Methods and strategies from Sections 4 and 5 are addressed where appropriate.389
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6.2.1 Creation390

Planning The planning of data creation deserves special care, because errors made during391

creation are typically difficult to repair. In the field, errors may not be repairable at all if the field392

conditions cannot be replicated or the cost of another deployment is prohibitive.393

Data management needs to specify the scope and form of the metadata set, and provide tools394

and procedures for metadata creation. Workflows and responsibilities can be made transparent395

by sorting the planned metadata items into the classes discussed in Section 4, i.e., executive396

vs. reusable, injected vs. extracted, process- vs. output-related. The specification of first-order397

metadata items involves the creation of higher-order metadata content. In field research, the398

environmental conditions and the data creation process need to be documented more extensively399

than in the lab, because there are fewer means of control and more chances of surprise.400

Terms coined during planning will propagate through a growing corpus of communication,401

documentation, and implementation. To avoid costly changes later, it is advisable to stabilize the402

terminology early on. FAIR terminologies must reflect community practices in their domains.403

This can either facilitate planning if a communal terminology already exists, or it can complicate404

planning if a terminology first needs to be compiled from scholarly sources. FAIR data managers405

may need to advocate for the requirements of reusers as discussed in Section 5.2.406

Terminology requirements may be different for humans and machines. Machines need more407

consistency, less ambiguity, and may accept only restricted token sets. Inconsistency and408

ambiguity may arise, e.g., in interdisciplinary settings when different communities use different409

terms for the same thing or the same term for different things. Since humans are more flexible, a410

machine-consumable version is preferable for co-processed information, e.g., file and directory411

names. In this case, human collaborators must be educated on machine requirements.412

Concerning the tensions discussed in Sections 4.2 and 5.2, the creation of purely executive or413

purely reusable metadata is relatively easy: Producers are intrinsicly motivated to fulfill their414

own needs, and pure reusage issues can be handled by the data manager alone. For metadata415

concerning both producers and reusers, however, the data manager again has to advocate for the416

reusers’ requirements and possibly bear the additional effort (or part of it) during execution.417

Execution In a collaborative setting, different people may observe different features of an418

object. This is an opportunity for the data manager to be a team player, as discussed in Section419

5.1: Having one person responsible to record all observations avoids misalignment and ensures420

consistency, completeness, and uniform compliance with standards, e.g., related to accuracy or421

measuring units. The information relay requires structured communication and routines to avoid,422

detect, and correct miscommunication.423

A designated record keeper can also take note of problems and unforeseen events which may424

help improve the planning of future data creation sessions. This may be performed proactively425

by looking out for and trying to prevent errors in the first place. As discussed in Section 5.1,426

field data creation can be cognitively very taxing, so it is easy to miss, e.g., a critical failure of a427

single component. Therefore, having someone specifically focused on error detection is useful.428
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Evaluation DeeperSense and RoBivaL each had multiple data creation sessions, so there was429

reason and occasion to improve the data creation system during the project, e.g., by capturing430

additional metadata items, or by simplifying the creation process. This was partially countered431

by the requirement to have data and metadata be compatible between all sessions. To avoid this432

tension, it is advisable to perform pre-trials where the data creation system can be tested.433

If the metadata recording task is delegated, e.g., due to illness, the recording tools must be434

usable for the delegate, who may be unfamiliar with the task and have additional resposibilities.435

Mandatory and important metadata items must be indicated. Content requirements must be436

clearly communicated. Number and complexity of items should be kept at a minimum.437

6.2.2 Provision438

Planning Provision is dedicated to the needs of the original research team, in contrast to439

publication which caters to reusers. Therefore, provision seems to require executive metadata,440

while publication requires reusable metadata (see Section 4.2). Still, to ensure a smooth transition441

between the phases, it may be wise to gather reusable metadata already during provision.442

The internal data repository must be layed out physically: How much data will be stored where443

and for which purpose? For example, there may be storage embedded in sensor platforms to444

collect raw data; file servers to consolidate, backup, and exchange data; database servers to445

validate, merge, filter, and aggregate data; workstations of different contributors to process and446

analyze data parts; high-performance servers for compute-intensive tasks.447

Logically, the repository can be specified with different resolutions, on multiple layers and448

domains. Aspects to consider may be file trees, database schemas, and request APIs; encodings,449

types, and formats; sources and processing stages; separation of base data and metadata; auxiliary450

assets (e.g., documentation, specification, schemas, logs, errors). The terminology should be451

consistent between layers and domains, and be compatible with terminologies of the other phases.452

Again, in case of tensions between the needs of producers and reusers, the data manager may453

have to advocate for the reuser perspective (see Section 5.2).454

Governance and administration of the internal repository as a shared resource must be specified.455

Who gets access to what? How are safety, security, availability, quality, and privacy established?456

Who is in charge for which procedures? Examples are consolidation of data from different457

sources, sessions, or processing stages; deduplication of redundant data; replication to prevent458

data loss; data removal to free resources; consistency checking and error management.459

Execution An explicit specification of the physical and logical layout can improve team460

alignment. User onboarding is an opportunity to check if the specification is properly understood461

and reflects the actual requirements. The layout and its specification may need to be updated to462

account for e.g., larger volume, changing pipelines, different data formats, etc. Such adjustments463

during execution may never fully be prevented; still they should be noted for evaluation.464

DeeperSense and RoBivaL developed dedicated metadatabases to facilitate reporting (e.g.,465

volume per data layer, sample count per sensor type and session, runs per experiment and robot).466

As standalone items, they can be transmitted separately from the large base data corpora. They467
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provide information for decision-making both by the executing researchers (e.g., are there critical468

data gaps?) and reusers (e.g., is this dataset suitable for my use case?). Thus, the metadatabases469

are a further example of shared concerns as discussed in Section 4.2.470

Evaluation Physical and logical layouts emerge even if they are not expressly designed. They471

are implemented by contributors out of necessity to accomplish particular tasks, and are reinforced472

by continued use. To achieve interoperability and consistency in a collaborative setting, a473

patchwork of individual approaches must be consolidated.474

But there is tension: Research data processing must be flexible enough to adjust to new findings475

and changing views. In interdisciplinary research, practices from different domains must be476

accommodated. Too much specification too early or too rigidly may lower the acceptance and477

adoption of a layout. Further, writing a comprehensive, accurate, and understandable specification478

may be difficult and time-consuming, thus conflicting with other priorities. On the other hand,479

working with undocumented, inconsistent layouts that need to be reverse engineered and might480

change without notice, lowers productivity and risks producing bad results. This dilemma shows481

that it may not always be obvious for a data manager how to follow the maxim expressed in482

Section 5.1 to ease the effort of the production team.483

6.2.3 Processing484

Planning The processing phase is typically comprised of multiple stacked processing sub-485

stages, as discussed in Section 4.3 and depicted in Figure 5. Therefore, the processing phase486

may give rise to a lot of first-order metadata content. Injected metadata may already be created487

during planning, both related to the (sub-)processes and to their outputs. Extracted metadata488

will normally be created during execution. Some extracted metadata may be created during489

evaluation, e.g., if problems with the processes or their outputs must be documented.490

Processing resources must be supplied for different tasks and stages. This includes individual491

workstations for all team members, and high performance servers that are used as a shared492

resource. If there are multiple contributors, it is important to specify who is responsible for493

which processing job, and what are the interfaces between consecutive steps in a processing494

pipeline.495

Execution One core responsibility of the data manager is metadata processing. In RoBivaL496

and DeeperSense, this was done in the context of developing and maintaining a metadatabase,497

involving schema design, metadata extraction, fusion, and aggregation. (These tasks require498

also creation and provision, and are planned before execution; they are highlighted here to mark499

the metadatabase as a processing tool.) The data manager may also be tasked with (meta)data500

quality assurance, which affects all other processing jobs. This involves the conception of error501

cases, error logging, escalation of errors, and resolution management.502

If the results of a processing step need to be persisted for later consumption by other processing503

steps, this produces a feedback loop between processing and provision.504
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Evaluation In case the input or output requirements of a processing step change, updates to the505

interface with its predecessor or successor steps may need to be negotiated.506

6.2.4 Publication507

Planning The data repository where the data and metadata are to be published should match508

the given content. Where will the intended reusers be likely to look for data to match a certain509

use case? The journal Scientific Data recommends various data repositories geared towards510

particular natural and social sciences, as well as some generalist repositories [51]. For large511

datasets, space constraints by different repositories may have to be considered.512

Execution Data from RoBivaL and DeeperSense was published on Zenodo. The publisher513

requires filling out a form with platform-specific metadata, i.e., authors and contributors with514

affiliations and IDs, a summary description of the dataset, references to related publications, etc.515

Evaluation Typically, only a part of all data and metadata created during a project will be516

published. To facilitate the separation, it is advisable to store the parts dedicated for publication517

at a separate place from the beginning, or at least design the internal storage such that these parts518

are clearly marked and can be easily extracted.519

6.2.5 Reuse520

Reuse is different from the other data lifecycle phases, because its planning, execution, and521

evaluation are outside the purview of the data production team. We did not get any feedback522

from data reusers yet, so we currently cannot report any experiences about the reuse of data from523

RoBivaL or DeeperSense.524

6.2.6 Archiving525

The data from RoBivaL and DeeperSense has not been archived yet, so there is no experience to526

report.527

7 Conclusion528

This paper discussed the collaborative creation and management of rich FAIR metadata on three529

dimensions: the metadata content, the social relationships between metadata stakeholders, and530

the phases of metadata management over time. The discussion was illustrated with examples531

from the robotics field research projects RoBivaL and DeeperSense.532

On the content dimension, we categorized metadata by different purposes, presented a broad533

spectrum of metadata topics, and discussed the relationship between executive metadata for data534

producers, and rich reusable metadata to satisfy the FAIR principles. We modeled the process of535

metadata creation at the micro level, introducing the concepts of injected and extracted metadata,536

and of higher order metadata.537

One risk to consider here is the possibility of scope explosion in multiple directions: Firstly, since538

executive metadata covers many areas, metadata management for internal purposes might soon539
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turn into general knowledge management. Secondly, since rich metadata lacks a comprehensive540

definition and is grounded in potential needs of data reusers, it is difficult to judge what must be541

included and what may be omitted. Thirdly, higher order metadata implies an infinite recursion542

which must be capped at a level that is reasonable for different stakeholders.543

The purpose of higher order metadata is to create formal and accessible expressions of common544

knowledge and practice which may exist primarily in the heads of practitioners. This is difficult545

for multiple reasons, not least because it entails a social process: Who may contribute their546

expertise and how? Does everyone agree with an expression and how are conflicts resolved?547

To get broadly adopted, FAIR RDM practices must make sense to data producers. We argued548

that this is more likely if producers see their own requirements and challenges taken into account.549

Still, caring for reusability may appear to many researchers as a burden that interferes with their550

primary goals. Therefore, we presented FAIR data production as team work where someone551

takes on the role of a dedicated FAIR RDM expert who at the same time provides immediate552

value to their research team. We attempted to contribute to a definition of this role and explain553

its competing demands, and we presented tools for the design and communication of FAIR RDM554

workflows that facilitate collaboration in data production teams.555

Trust is a social aspect we omitted in our discussion, because it is a broad topic in itself and556

involves additional stakeholders. Data reuse depends on the assumption that the delivered data557

is not manufactured to deceive. Though not a FAIR principle, this is certainly a maxim of558

scientifc fairness in a broader sense. But even if their intentions are pure, producers may deceive559

themselves in thinking their data is accurate and represents reality. This problem is compounded560

when data is processed by different people on multiple stages, or fused from multiple providers.561

At the end of the data supply chain are people who apply, consume, or are otherwise affected by562

products derived from data. For them, trustworthyness may literally be a life-and-death issue.563

The DeeperSense sonar-to-camera translation is an example from our own research. Diving564

companies have expressed their motivation to solve the trustworthyness problem in this case.565

On the time dimension, we divided the prevalent image of a simple data lifecycle into an outer566

and an inner cycle: The phases of the outer cycle are actions that apply to data (i.e., creation,567

provision, etc.). The phases of the inner cycle are actions that apply to each outer phase, namely568

planning, execution, and evaluation. Evaluation allows the data management system to improve569

over multiple research iterations.570

One important challenge here is to find the right balance between flexibility and stability of the571

data management system. Flexibility is necessary to eliminate errors and inefficiencies in the572

system itself, and to be able to adapt to new insights and requirements for the primary research.573

Stability of the system facilitates its adoption, provides backwards compatibility, and allows574

one to devote more energy to primary research. The trick is to know when the system is good575

enough, and to stop improving when the marginal benefit becomes too small.576
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