
�

Date Submitted:

2025-03-31

License:

This work is licensed under CC BY

4.0cb

Keywords:

research data management, figure,

plot, FAIR data, metadata

Data availability:

This article does not use data.

Software availability:

Plot Serializer GitLab Repository

Plot Serializer DOI

Plot Serializer Docs

Corresponding Author:

Michaela Leštáková

michaela.lestakova@tu-darmstadt.de

SOFTWARE DESCRIPTOR

preprints
Plot Serializer – A Tool for Creating FAIR Data for Scientific

Figures

Michaela Leštáková�
1
, Ning Xia�

1
, Julius Florstedt

1

1. Chair of Fluid Systems, Technische Universität Darmstadt, Darmstadt, Germany.

Abstract. To fight the reproducibility crisis in science, more and more researchers are

adopting the practice of sharing their research data. However, making research data com-

prehensible and reusable for others often takes significant amount of time and effort. This

software descriptor introduces Plot Serializer, a Python package for supporting researchers

in creating FAIR datasets corresponding to the figures of their manuscript. Fitting into existing

workflows, Plot Serializer enables effortless export of data plotted in scientific figures into in-

teroperable datasets with customizable metadata for improved reusability and thus facilitates

research data management practices. Besides a clear description of Plot Serializer’s scope

and functionality, a minimal example of its usage and output is given. Finally, its limitations

and future plans are outlined.

1 Introduction1

Research objects such as data and code are ubiquitous in scientific work. To fight the repro-2

ducibility crisis in science, more and more researchers are adopting the practice of sharing3

research objects associated with publications or even as standalone research output. This practice4

is sometimes also required by journals, conferences and funding bodies. The research objects5

are of best use for the scientific community if they are findable, accessible, interoperable and6

reusable, i.e. FAIR [1], [2]. However, making research objects FAIR is not only challenging7

but often also time-consuming. Plot Serializer has been developed as a Python package that8

helps researchers create FAIR datasets corresponding to the figures of their manuscript with little9

effort. This leads to enabling the reader to understand the interconnections between different10

research objects, such as which data is depicted in a certain figure in the manuscript and with11

which code it was created, which is an important part of the “R” in FAIR: reusability.12

In scientific articles, data visualizations or figures can be seen as “windows” to the data space13

behind the article: they are an essential result of scientific work and serve as a link between the14

text and the data that it is based on. However, probably every researcher knows the struggle15

of getting their hands on the data depicted in a figure. In most cases, it is still necessary to16

contact the authors of the paper to obtain the data. Fortunately, it is becoming more common that17

scientific articles contain a data availability statement with a reference to an openly available18

dataset [3]. However, even then the data may be poorly documented or not follow the FAIR19

principles: despite being findable and accessible, they may lack interoperability and reusability.20

ing.grid 2025 1

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://git.rwth-aachen.de/rdm-tools/plot-serializer
https://doi.org/10.5281/zenodo.15082363
https://plot-serializer.readthedocs.io/en/latest/
mailto:michaela.lestakova@tu-darmstadt.de
https://orcid.org/0000-0002-5998-6754
https://orcid.org/0009-0006-8245-5958


SOFTWARE DESCRIPTOR Plot Serializer

Plot Serializer has been developed as a tool to address these issues, aiming to lower the threshold21

for creating comprehensible, datasets corresponding to the figures in a scientific publication.22

2 Scope23

Plot Serializer is a Python package that enables effortless export of data plotted in scientific24

figures into interoperable datasets with customizable metadata for improved reusability. As the25

name indicates, Plot Serializer utilizes serialization: the process of converting a Python object or26

data structure into a format that can be easily stored or transmitted [4]. The current version of27

Plot Serializer provides APIs for figure creation using matplotlib, the most popular plotting28

package among Python users. Other plotting packages such as plotly are currently not supported29

but the modular architecture of Plot Serializer allows to include them in the future.30

Using a Proxy class, Plot Serializer wraps the plotting functions of matplotlib and captures31

the data immediately after being passed to the plotting function, hence ensuring consistency32

between the plotted data and exported data. Important metadata are gathered in the process of33

plotting. It is possible to differentiate between two kinds of metadata in the context of figures:34

semantic metadata that carry information about the content and meaning of the data (for example35

axis labels or plot title) and formatting metadata that describe the plot style (for example axis36

scaling, line thickness or colors). Plot Serializes prioritizes semantic information to formatting37

information, as its focus lies on supporting research data management (RDM). Plot Serializer38

uses its own metadata model that loosely follows the conventions of matplotlib. The data39

models have been implemented using Pydantic [5].40

Currently, Plot Serializer covers the most widely used types of 2D and 3D figures, namely:41

• line plot 2D42

• line plot 3D43

• scatter 2D44

• scatter 3D45

• surface 3D46

• bar plot47

• error bar48

• box plot49

• pie50

• histogram51

Each of these figure types has slightly different requirements regarding data formatting and52

metadata modelling. We are continuously working on expanding the list.53

As not all semantic metadata are by default provided through the figure (for example certain54

parameter values may instead be provided via the figure caption or through a text box), Plot55

ing.grid 2025 2



SOFTWARE DESCRIPTOR Plot Serializer

Serializer offers the possibility to add custom metadata in the form of key-value pairs to each56

element of the plot. This enables customizability to a broad range of use-cases across disciplines.57

Once the figure has been finalized, Plot Serializer allows the export to a JSON file which is58

easily human and machine readable, as well as to Research Object Crate (RO-crate), a newly59

established format for storing research objects based on JSON-LD [6]. The idea behind it is to60

improve reusability of research objects by packaging them along with their metadata, which can61

capture identifiers, provenance, relations and annotations, in a machine readable manner [6].62

Plot Serializer also includes tools for deserializing its output, i.e. the JSON files, to recreate63

the figures. This is where the the formatting metadata play an important role. As the format-64

ting metadata in Plot Serializer contain only a limited selection of all formatting information65

that a matplotlib figure would provide, the focus lies on comprehensible rather than identical66

representation of the original figure.67

To summarize, serializing figures with Plot Serializer offers researchers a simple but efficient68

tool for creating FAIR datasets that correspond to the figures in their scientific articles. This may69

ultimately help readers find the dataset corresponding to a certain figure and vice versa while70

guaranteeing to include essential semantic and formatting metadata.71

3 Related Work72

Because of the important role data visualization plays in scientific articles, several tools exist73

for creating figures in most programming languages. In Python, the most well-known and most74

widely used one is matplotlib [7]. Using the pyplot module in this package, users can create75

a broad spectrum of figure types and perform advanced formatting. The Python APIs provided76

by matplotlib are well documented and easy to use, making them easy to integrate into any77

workflow. As the name suggests, matplotlib’s main focus lies on the visualization of the data,78

with the final product being the figure. The data depicted in the figure is not comprehensively79

stored in the corresponding Python object, and matplotlib does not contain any function for80

serializing the figure objects it creates.81

plotly [8] is another popular plotting package that provides Python APIs. plotly is originally82

a JavaScript library plotly.js with the main purpose of creating interactive plots for websites.83

plotly by default enables to serialize the figure objects into JSON files, similarly to Plot84

Serializer. However, focusing on visualization rather than RDM, plotly prioritizes formatting85

metadata to semantic metadata.86

The most widely used package for serialization of objects in Python is pickle [9]. Using87

pickle, however, the object hierarchy is kept upon serialization, which ultimately means its88

main focus lies on formatting requirements of matplotlib. To find data and add relevant semantic89

metadata to it would be very challenging for the user. Moreover, the data format pickle uses is90

Python-specific. While this brings advantages regarding the serialization, it also means reduced91

interoperability from the perspective of the FAIR criteria.92

Recently, some authors have demonstrated RDM workflows that include creating and publishing93

data for each figure with the aim of improving reusability of their data [10], [11]. In their94

ing.grid 2025 3



SOFTWARE DESCRIPTOR Plot Serializer

Figure 1: Simplified class diagram for two figure types in Plot Serializer: a 2D bar plot and a 3D

scatter plot.

workflows, a JSON file is created for each figure in the article which contains the data as well as95

semantic metadata. These files are published in a data repository and linked in the article.96

4 Implementation97

Plot Serializer is implemented as a library, mirroring the most commonAPI calls of matplotlib98

while supplementing its functionality with generating the JSON format out of the plotting data.99

Instead of starting the plotting process via the matplotlib.pyplot [7] object, the user instead100

creates an instance of Plot Serializer’s MatplotlibSerializer class which acts as the main101

API for Plot Serializer.102

The API of MatplotlibSerializer follows the one of matplotlib.pyplot.subplots(). Upon103

execution, MatplotlibSerializer.subplots() creates a Figure object like its matplotlib104

counterpart but, crucially, its own AxesProxy object rather than matplotlib’s Axes object.105

The AxesProxy class contains functions that enable serialization and can thus be seen as the106

core of the Plot Serializer architecture.107

The aim of AxesProxy is to mimic the functionality of matplotlib’s Axis class but to enable108

gathering data along with all necessary metadata handed over by the user during the plotting109

process. The data is captured in the initial step of the execution of the plotting functions such as110

plot() or scatter(). Metadata is gathered all throughout the plotting process: a part of it may111

come from arguments passed to the plotting functions, such as marker or label in the minimal112

example in Section 5, while others are gathered from other functions executed on the object,113

such as xlabel and ylabel ibid. Last but not least, using AxesProxy allows Plot Serializer to114

ing.grid 2025 4



SOFTWARE DESCRIPTOR Plot Serializer

easily differentiate between errors raised in matplotlib from its own.115

The class hierarchy of Plot Serializer is strongly tailored to the one of matplotlib with some116

changes for better understandability in the scientific community, see Figure 1. It is modelled using117

Pydantic [5], a state-of-the-art Python package for data validation which supports conversion118

to JSON. Each scientific figure is thus represented using a Figure class. Each Figure can119

contain multiple Plots. Depending on their dimensionality, each Plot can have two or three120

Axes, corresponding to the coordinate lines of the figure. The Axes form the coordinate system121

of the Plot. The Plot can contain multiple Traces, which are sets of Datapoints related in a122

way that separates them from other datapoints. The minimal example in Section 5 contains two123

Traces: one for children and one for adults. The terminology of the classes and their properties124

has been selected with a focus on good human readability of the resulting JSON.125

Besides writing the figure into a JSON file, Plot Serializer supports adding the JSON to an126

RO-Crate or create a new one containing the serialized figure [6].127

To facilitate better usability of data serialized using Plot Serializer, the package contains a so-128

called Deserializer which enables to convert a JSON file created by Plot Serializer back into129

the corresponding Pydantic class to be ultimately used by matplotlib to recreate the original130

figure. As previously discussed, the focus of Plot Serializer lies on RDM and thus semantic131

rather than formatting metadata, which means that Deserializer will not be able to perfectly132

reproduce highly individualized figures. However, it should be able to deliver comprehensible133

representations of the underlying data in most cases.134

To assure code quality, Plot Serializer uses both static and dynamic code analysis.135

For static code analysis, Plot Serializer relies on the linter Ruff which allows it to improve136

code-structure, readability and maintainability. Code and functionality independent from the137

matplotlibAPI are typed and type-checked via MyPy.138

The dynamic analysis consists primarily of testing. The plotting functions for each of the covered139

figure types are first tested manually with multiple input sets to ensure that the output matches the140

expectation. If correct, the resulting JSON files are used as a benchmark in subsequent unit tests141

and compared after each commit. Additionally, Plot Serializer uses automatic testing (mostly142

fuzzing), testing a variety of inputs with hypothesis strategies. The testing is performed with143

pytest and achieves a code coverage of 83% , not counting hypothesis testing.144

Plot Serializer is well documented. The documentation has been created using Sphinx and145

is available under https://plot-serializer.readthedocs.io/en/latest/. Each version comes with a146

thorough general and API documentation.147

ing.grid 2025 5

https://plot-serializer.readthedocs.io/en/latest/


SOFTWARE DESCRIPTOR Plot Serializer

Figure 2: Example figure

5 Minimal Example148

The example figure in Figure 2 was created using the following code:149

1 from plot_serializer.matplotlib.serializer import MatplotlibSerializer150

2151

3 serializer = MatplotlibSerializer()152

4 fig, ax = serializer.subplots()153

5154

6 x = [0, 1, 2, 3, 4]155

7 y_child = [0, 0.3, 0.5, 0.6, 0.65]156

8 y_adult = [0, 0.25, 0.4, 0.5, 0.55]157

9158

10 ax.plot(x, y_child, marker="o", label="child")159

11 ax.plot(x, y_adult, marker="o", label="adult")160

12161

13 ax.set_xlabel("NUMBER OF COOKIES EATEN")162

14 ax.set_ylabel("HAPPINNESS LEVEL")163

15 ax.legend()164

16165

17 fig.savefig("cookies.png")166

18 serializer.write_json_file("./test_plot.json")167

ing.grid 2025 6



SOFTWARE DESCRIPTOR Plot Serializer

The command write_json_file from line 18 of the above code will produce a JSON file168

test_plot.json with the following contents:169

1 {170

2 "plots": [171

3 {172

4 "type": "2d",173

5 "title": "",174

6 "x_axis": {175

7 "label": "NUMBER OF COOKIES EATEN",176

8 "scale": "linear"177

9 },178

10 "y_axis": {179

11 "label": "HAPPINNESS LEVEL",180

12 "scale": "linear"181

13 },182

14 "traces": [183

15 {184

16 "type": "line",185

17 "linewidth": 1.5,186

18 "linestyle": "-",187

19 "marker": "o",188

20 "label": "child",189

21 "datapoints": [190

22 {191

23 "x": 0,192

24 "y": 0.0193

25 },194

26 {195

27 "x": 1,196

28 "y": 0.3197

29 },198

30 {199

31 "x": 2,200

32 "y": 0.5201

33 },202

34 {203

35 "x": 3,204

36 "y": 0.6205

37 },206

38 {207

39 "x": 4,208

40 "y": 0.65209

41 }210

ing.grid 2025 7



SOFTWARE DESCRIPTOR Plot Serializer

42 ]211

43 },212

44 {213

45 "type": "line",214

46 "linewidth": 1.5,215

47 "linestyle": "-",216

48 "marker": "o",217

49 "label": "adult",218

50 "datapoints": [219

51 {220

52 "x": 0,221

53 "y": 0.0222

54 },223

55 {224

56 "x": 1,225

57 "y": 0.25226

58 },227

59 {228

60 "x": 2,229

61 "y": 0.4230

62 },231

63 {232

64 "x": 3,233

65 "y": 0.5234

66 },235

67 {236

68 "x": 4,237

69 "y": 0.55238

70 }239

71 ]240

72 }241

73 ]242

74 }243

75 ]244

76 }245

The JSON file provides the essential information about the figure and the data shown in it. The246

user does not have to provide any additional information that goes beyond good scientific data247

visualization practices, such as providing axis descriptions – all information stems from what248

has been passed to the ax object via the corresponding functions.249

The figure is the first and only element of the "plots" list. Under the keyword "traces",250

the two traces, i.e. sets of data points depicted in the diagram can be found. Hence, there are251

two traces, each consisting of 4 data points, which depict the relationship between "NUMBER OF252

COOKIES EATEN" and "HAPPINNESS LEVEL" for children and adults.253

ing.grid 2025 8



SOFTWARE DESCRIPTOR Plot Serializer

Plot Serializer also allows users to add custom metadata to each figure element – the figure itself,254

the plot (for figure with multiple plots, referred to in matplotlib as subplots), the axes, the255

traces and the individual datapoints:256

1 serializer.add_custom_metadata_figure({"date_created": "10.01.2025", "257

author": "Michaela Lestakova"})258

2 serializer.add_custom_metadata_plot(259

3 {"description": "the figure describes the relationship between260

number of cookies eaten and happinness level"}261

4 )262

5 serializer.add_custom_metadata_axis({"unit": "percent"}, axis="y")263

6 serializer.add_custom_metadata_trace({"definition": "child is a person264

of age 0-17.99"}, trace_selector=0)265

7 serializer.add_custom_metadata_trace({"definition": "adult is a person266

of age 18+"}, trace_selector=0)267

8 serializer.add_custom_metadata_datapoints(268

9 {"information": "you may have something important to say about269

this point"}, trace_selector=0, point_selector=1270

10 )271

6 Plot Serializer and the FAIR Principles for Research Software272

As a Python package, Plot Serializer follows the FAIR principles for research software [1] in the273

following aspects:274

Findable

&Accessible

• Plot Serializer has a DOI and is versioned (F1, A2)

• Plot Serializer is listed on PyPI where all relevant metadata can be found

(A1, F2)

Interoperable • Plot Serializer exports to JSON, a format that performs well in terms of

human and machine readability (I1)

Reusable • Plot Serializer has a detailed and openly available documentation (R1)

• Plot Serializer is published under an open source license – MIT (R1)

• A list of dependencies of Plot Serializer is provided. Plot Serializer does

not depend on proprietary software (R2)

• The software quality of Plot Serializer is guaranteed through rigorous

testing and continuous integration (R3)

Table 1: Specification of how Plot Serializer aligns with the FAIR principles for research software.

The concrete criteria are named in parentheses in the left column.

ing.grid 2025 9



SOFTWARE DESCRIPTOR

7 Conclusion and Outlook275

This software descriptor introduces Plot Serializer, a Python package for supporting researchers276

in creating FAIR datasets corresponding to the figures of their manuscript. It enables effortless277

export of data plotted in scientific figures into interoperable datasets with customizable metadata278

for improved reusability, facilitating research data management practices. Plot Serializer fits279

well into established plotting workflows and can be easily adopted by anybody familiar with the280

popular plotting package matplotlib. In this software descriptor, we have briefly introduced281

the architecture of Plot Serializer as well as the underlying data models and provided a minimal282

example of its usage. We have also described its scope and limitations and provided information283

about code quality assurance.284

Plot Serializer is under continuous development. In the near future, we aim to extend its scope285

to more figure types. Moreover, we aim to standardize its metadata model into a metadata286

schema building upon existing ontologies. The metadata schema will be published to ensure287

comprehensiveness of the metadata terminology across domains. In long term, Plot Serializer288

may be expanded to other popular plotting packages in Python.289

8 Acknowledgements290

The authors would like to thank the Federal Government and the Heads of Government of the291

Länder, as well as the Joint Science Conference (GWK), for their funding and support within the292

framework of the NFDI4Ing consortium. Funded by the German Research Foundation (DFG) –293

project number 442146713.294

We would like to thank the student group consisting of Jan Groen, Jonas Jahnel, Max Troppmann,295

Thomas Wu and, of course, the co-author of this paper Julius Florstedt who developed the first296

version of Plot Serializer as a student project.297

The original idea about storing plot data in human and machine readable form, out of which298

Plot Serializer was born, stems from Kevin T. Logan and Tim M. Buchert. Many thanks for the299

inspiring discussions.300

9 Roles and contributions301

Michaela Leštáková: Conceptualization, Software, Writing – original draft, Supervision302

Ning Xia: Conceptualization, Software, Writing – original draft, Supervision303

Julius Florstedt: Conceptualization, Software, Writing – original draft304

References305

[1] M. Barker, N. P. Chue Hong, D. S. Katz, et al., “Introducing the FAIR principles for306

research software,” Scientific data, vol. 9, no. 1, p. 622, 2022. DOI: 10.1038/s41597-0307

22-01710-x.308

ing.grid 2025 10

https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1038/s41597-022-01710-x


SOFTWARE DESCRIPTOR Plot Serializer

[2] M. D. Wilkinson, M. Dumontier, I. J. J. Aalbersberg, et al., “The FAIR Guiding Principles309

for scientific data management and stewardship,” Scientific data, vol. 3, p. 160 018, 2016.310

DOI: 10.1038/sdata.2016.18.311

[3] L. Tedersoo, R. Küngas, E. Oras, et al., “Data sharing practices and data availability upon312

request differ across scientific disciplines,” Scientific data, vol. 8, no. 1, p. 192, 2021.313

DOI: 10.1038/s41597-021-00981-0.314

[4] M. Pilgrim, “Serializing python objects,” in Dive Into Python 3. Berkeley, CA: Apress,315

2009, pp. 205–223, ISBN: 978-1-4302-2416-7. DOI: 10.1007/978-1-4302-2416-7_1316

3. [Online]. Available: https://doi.org/10.1007/978-1-4302-2416-7_13.317

[5] S. Colvin, E. Jolibois, H. Ramezani, et al., Pydantic, version v2.10.6, Jan. 2025. [Online].318

Available: https://github.com/pydantic/pydantic.319

[6] S. Soiland-Reyes, P. Sefton, M. Crosas, et al., “Packaging research artefacts with RO-320

Crate,” Data Science, vol. 5, no. 2, pp. 97–138, 2022. DOI: 10.3233/DS-210053. eprint:321

https://doi.org/10.3233/DS-210053. [Online]. Available: https://doi.org/10322

.3233/DS-210053.323

[7] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science & Engi-324

neering, vol. 9, no. 3, pp. 90–95, 2007. DOI: 10.1109/MCSE.2007.55.325

[8] N. Kruchten, A. Seier, and C. Parmer, An interactive, open-source, and browser-based326

graphing library for Python, version 5.24.1, Sep. 2024. DOI: 10.5281/zenodo.145035327

24. [Online]. Available: https://github.com/plotly/plotly.py.328

[9] Python documentation, Pickle — Python object serialization, 2025. [Online]. Available:329

https://docs.python.org/3/library/pickle.html (visited on 03/17/2025).330

[10] K. T. Logan, J. M. Stürmer, T. M. Müller, and P. F. Pelz, Comparing approaches to331

distributed control of fluid systems based on multi-agent systems, 2023. arXiv: 2212.084332

50 [eess.SY]. [Online]. Available: https://arxiv.org/abs/2212.08450.333

[11] T. Müller and P. Pelz, “Algorithmisch gestützte Planung dezentraler Fluidsysteme,” Dis-334

sertation, Technische Universität Darmstadt and Shaker Verlag, 2022.335

ing.grid 2025 11

https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/s41597-021-00981-0
https://doi.org/10.1007/978-1-4302-2416-7_13
https://doi.org/10.1007/978-1-4302-2416-7_13
https://doi.org/10.1007/978-1-4302-2416-7_13
https://doi.org/10.1007/978-1-4302-2416-7_13
https://github.com/pydantic/pydantic
https://doi.org/10.3233/DS-210053
https://doi.org/10.3233/DS-210053
https://doi.org/10.3233/DS-210053
https://doi.org/10.3233/DS-210053
https://doi.org/10.3233/DS-210053
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.14503524
https://doi.org/10.5281/zenodo.14503524
https://doi.org/10.5281/zenodo.14503524
https://github.com/plotly/plotly.py
https://docs.python.org/3/library/pickle.html
https://arxiv.org/abs/2212.08450
https://arxiv.org/abs/2212.08450
https://arxiv.org/abs/2212.08450
https://arxiv.org/abs/2212.08450

	Introduction
	Scope
	Related Work
	Implementation
	Minimal Example
	Plot Serializer and the FAIR Principles for Research Software
	Conclusion and Outlook
	Acknowledgements
	Roles and contributions

