
�

Date Submitted:

2024-12-31

License:

This work is licensed under CC BY

4.0cb

Keywords:

Artifacts, Benchmarks,

Recombination, Schemas, Software

Tools

Data availability:

Benchmark and tool artifacts for all

case studies

Software availability:

ReReSo schemata and JVM tooling

Maven artifact

Case study source code

Corresponding Author:

Simon Dierl

simon.dierl@tu-dortmund.de

RESEARCH ARTICLE

preprints
Towards a Specification for Recombinable Benchmarks

and Software Tools

Simon Dierl� 1, Falk Howar� 1, 2

1. Department of Computer Science, TU Dortmund University, Dortmund, Germany.

2. Research Coordinator, Fraunhofer ISST, Dortmund, Germany.

Abstract. We consider research that is based on implementing software tools from novel

ideas and evaluating them by executing the tools against benchmarks. Subsequent research

project would benefit from freely recombining existing and novel tools and benchmarks

to acquire data. However, existing approaches for distributing tools and artifacts do not

allow recombination. We propose an approach for packaging and describing tools and

benchmark that allows and supports recombination. We specify a tool packaging format,

an approach to structuring benchmarks, and a descriptor file format to link the two. We

applied these specifications in two case studies in Software Engineering and Environmental

Engineering. For each case study, we considered the benefit gained and the overhead

induced by introducing our approach, e.g., for file format conversions. While minor limitations

became apparent, we showed both the viability of our proposed specification and its low

overhead in terms of development effort.

1 Introduction1

In many disciplines, research involves the implementation of ideas and algorithms into (proto-2

typal) tools. Claims about the correctness or performance of the implemented algorithms are3

evaluated by executing these tools on benchmarks, i.e. non-executable collections of data and4

accompanying metadata. For example, a machine learning-based object recognition algorithm5

would be evaluated using a collection of images labeled with the objects visible in them. The6

closer the implementation’s outputs and the labels are, the better the tool performs.7

Being able to re-run such experiments is essential for open science. In Software Engineering and8

other fields of study, publications are therefore often accompanied by peer-reviewed1 replication9

packages that contain the tool(s) and benchmarks used in the study and that are long-term archived10

on, e.g., Zenodo. Such packages are usually containers (e.g., OCI containers or virtual machines).11

An example is shown in Figure 1a. With respect to the FAIR [3] and FAIR4RS [4] principles,12

accessibility is guaranteed by the long-term archival platform’s facilities, while findability is13

dependent on the quality of the packages’ metadata.14

1. Successful replication is usually denoted on the publication using ACM [1] or EAPLS [2] badges.

ing.grid 2025 1

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://zenodo.org/records/15651294?preview=1&token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjExM2MyZWY4LTlmMWEtNGMwOS04OWRiLTc2OGRlNzU4NDJmNiIsImRhdGEiOnt9LCJyYW5kb20iOiJlMGQxNTgwMTM1NjkyYWRmYjczM2I5ZThlNDM1ZTMzYiJ9.gHAbh1Vg5KHswJufQNJHJPXJ0nwUedfI2mJ4pTi54pmANszg1-qC1X-vNjvwhgRAVM0IixzayY0sGxH4XXQTGQ
https://zenodo.org/records/15651294?preview=1&token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjExM2MyZWY4LTlmMWEtNGMwOS04OWRiLTc2OGRlNzU4NDJmNiIsImRhdGEiOnt9LCJyYW5kb20iOiJlMGQxNTgwMTM1NjkyYWRmYjczM2I5ZThlNDM1ZTMzYiJ9.gHAbh1Vg5KHswJufQNJHJPXJ0nwUedfI2mJ4pTi54pmANszg1-qC1X-vNjvwhgRAVM0IixzayY0sGxH4XXQTGQ
https://aqua.tools/rereso
https://central.sonatype.com/artifact/tools.aqua/rereso
https://aqua.tools/rereso-case-studies
mailto:simon.dierl@tu-dortmund.de
https://orcid.org/0000-0001-9730-9335
https://orcid.org/0000-0002-9524-4459
https://zenodo.org

RESEARCH ARTICLE Recombinable Benchmarks and Software Tools

Replication

Package

Tool

Config.

Eval. Script

Benchmark

Data

Metadata

(a) replication package

Tool Package

Tool

Adapter

Configuration

Config. Interface

Benchmark

Type A Data

Type B Data

Type C Data

B
e
n
c
h
m
.
In
te
rf
.

(b) recombinable tool and benchmark

Figure 1: Conceptual overview of our idea. While replication artifacts (a) combine benchmarks and

tools into a fixed bundle, our approach (b) allows recombination of benchmark and tool bundles via

defined interfaces.

However, research building upon existing, already-implemented ideas greatly benefits from not15

only being able to repeat past studies, but recombine either “historic” tools with new or extended16

benchmarks or measure the performance of new tools on benchmarks used in previous work. The17

former yields a picture of “tool evolution”, while the latter enables well-supported comparisons18

between competing tools.19

Replication packages – due to being closed systems – do not meet this need. Introducing20

new benchmarks into a container requires conversion into a supported format, may necessitate21

modifying evaluation scripts, etc. Transferring a tool into a new execution environment may be22

an even more daunting task. As a result, such containers are not interoperable or resusable. In23

the case of open-source tools, building “from scratch” instead is not be a viable alternative: in a24

survey of publications backed by software [5], Collberg and Proebsting failed to acquire and25

build even half of the tools.26

In this work, we propose a novel approach to packaging benchmarks and tools that enables re-27

combination. Instead of monolithic replication packages, we propose the system of recombinable28

benchmarks and tools sketched in Figure 1b: tools and benchmarks are independently packaged29

and combined via standardized interfaces “just in time”. For tools, this necessitates a form of30

containerization that allows users to pass benchmarks, configurations, etc. to the tool without31

having to modify the container’s inner workings. Benchmarks instead undergo a paradigm shift32

with respect to their contents. To facilitate maximum reuse, they must aggregate the greatest33

amount of data possible. This necessitates standardization of the exchange formats used, i.e.,34

how to containerize tools and how to describe the contents of tool and benchmark packages.35

Note that we do not intend to prescribe the actual data formats, but instead defer to research36

communities to agree on them. Such recombinable tools and benchmarks will, by definition, be37

interoperable and reusable, while descriptors increase their findability.38

Contribution We have drafted an abstract specification that defines a) a standardized format for39

containerizing tools, b) a descriptor language for benchmarks that can describe the data contained40

therein, and c) a descriptor language for tools that defines the input and output formats. We41

implemented a support library for working with such format in JVM programming languages. We42

instantiated our abstract specification in case studies in Software Engineering and Environmental43

ing.grid 2025 2

RESEARCH ARTICLE Recombinable Benchmarks and Software Tools

Engineering, estimated the benefit gained, and measured the overhead required for using our44

approach. Results show the viability of our approach, which induces only a low amount of45

overhead.46

Related Work Recombinable benchmarks should be technically interoperable according to the47

EOSC framework [6]. Our descriptor files for tools share approaches with the files used by the48

Common Workflow Language [7], however, that initiative is focused on describing tools and49

intermediary artifacts, not long-lived benchmarks.50

In Software Engineering and adjacent fields, there have been multiple successful field-specific51

standardization efforts, but no high-level specification similar to ours. We will discuss three52

examples. First, the Automata Wiki [8] collects and archives automata models (e.g., DFAs or53

Mealy machines) from research projects. However, the storage formats are only informally54

specified and metadata is only available as HTML pages. Second, the yearly Competition on55

Software Verification (SV-COMP) [9] compares software verification tools, using standardized56

benchmarks and tool formats. However, the tool format does not include the full ecosystems;57

instead, tools target a pre-installed software stack. This makes reuse of tools on foreign systems58

difficulty. Third, in the domain of security research, many benchmark collections aggregate59

web applications to be analyzed for security vulnerabilities, e.g., the OWASP benchmark [10],60

Juliet [11], and STONESOUP [12]. Each benchmark defines different program and metadata61

formats, showcasing the need for increased standardization. However, tool output formats have62

mostly been standardized in the SARIF [13] format.63

Structure The remainder of this work is structured as follows: Section 2 will introduce our64

proposed specification for packaging and describing benchmarks, while Section 3 will outline65

the same for tool containers. Next, we will discuss two case studies: Section 4 will describe our66

experiences in applying our framework in Software Engineering, while Section 5 describes a67

study in Environmental Engineering. We summarize our results in Section 6 and discuss potential68

future work.69

2 Recombinable Benchmarks70

In this section, we will describe our proposed benchmark format. We will first discuss our71

preferred approach of storing benchmarks as structured data. Next, we will consider the case of72

unstructured benchmarks. We will conclude by describing our proposed descriptor format and73

storage recommendations.74

2.1 Structured Benchmarks75

Ideally, recombinable benchmarks are stored in structured, preferably hierarchical data formats.76

Such formats lay out data by nesting primitives like lists, key-value mappings, strings, and77

numbers. Examples of structured data formats include JSON [14], YAML [15], and XML [16].78

When using these formats, benchmark authors must describe both the syntax (i.e., the data format79

being used) and the semantics (i.e., what data is encoded into which structures).80

ing.grid 2025 3

https://www.commonwl.org/
https://automata.cs.ru.nl/
https://sv-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/
https://www.json.org/
https://yaml.org/

RESEARCH ARTICLE Recombinable Benchmarks and Software Tools

1 [

2 {

3 author: "da Vinci, Leonardo",

4 title: "La Gioconda",

5 description: "A woman, sitting in front of a landscape",

6 image: "/9j/4RJ0", // truncated

7 },

8 {

9 author: "Raffael",

10 title: "La scuola di Atene",

11 description: "A room with scientists and philosophers",

12 image: "/9j/4AAQ", // truncated

13 },

14]

Figure 2: Example Renaissance painting database in JSON5 format. Each entry contains the

painter, title, a description, and the digitized painting.

As a running example, we will use the data set shown in Figure 2 aggregating information81

about Renaissance paintings. For each painting, the file contains painter’s name, the work’s82

title, a human-readable description of the subject, and the image itself. The data is structured as83

JSON52 [17]. A data scientist might use this benchmark to train a neural network to recognize84

the painter from a given image, using both the image data and the painter’s name. The same85

benchmark might be of interest to an art historian studying a painter’s preferred subjects from86

the names and content descriptions.87

For describing a benchmark’s syntax, we propose using media types [18], the quasi-standard for88

describing file types. For most formats, a standard identifier already exists – in our example,89

we would use application/json5 – and for other formats, non-standard identifiers can be90

defined by prepending the second component with x-.91

As discussed in the introduction, we envision benchmarks to aggregate as much data as possible,92

possibly spanning multiple domains, with consumers being responsible for extracting information93

relevant to them. When describing the semantic content of a benchmark, we therefore need to94

account for multiple types of data. We describe each type of data as a facet. Each subset of95

facets must be independently accessible in the benchmark, so users will be able to ignore facets96

irrelevant to their use case. Note that we do not designate facets as “data” or “metadata”, but97

leave this distinction to the benchmarks’ consumers. In our example, we would identify three98

facets: images, descriptions, and work information (i.e., names and titles). While the facet data99

is stored in proximity, it can still be independently accessed.100

In our proposed specification, we independently describe each facet using a schema language,101

JSON Schema [19]. Contrary to its name, this schema language can describe most hierarchical102

data formats, including JSON, but also a substantial fragment of XML. This stands in contrast to,103

e.g., XML Schema [20], which is designed to only describe XML. JSON Schemata are uniquely104

identified by an URL (conventionally, the location where the schema file is hosted). In the105

example, the facets would be described using the object model shown in Figure 3. Note that106

each facet independently describes the basic list-of-objects structure and then defines different107

attributes of each object.108

2. An extension to JSON with some convenience features such as comments.

ing.grid 2025 4

https://json5.org/
https://json-schema.org/

RESEARCH ARTICLE Recombinable Benchmarks and Software Tools

Images

Image

+ image: ImageData

1..*

(a) list of images

DescriptionList

DescribedItem

+ description: String

1..*

(b) list of described items

WorkInformation

Work

+ author: String

+ title: String

1..*

(c) list of work metadata

Figure 3: Schemata for three facets of the painting database.

This layout ensures that facets can be composed and accessed at will. The facets contained in a109

benchmark can be described by the set of schemata the benchmark satisfies. The availability110

of a large set of open-source validation tools ensures that compliance with a schema can be111

automatically checked. Finally, since JSON Schema permits the definition of schemata as the112

intersection of subsidiary schemata, common combinations of facets can be succinctly identified113

by a single combining schema.114

2.2 Unstructured Benchmarks115

In practice, not all benchmarks can easily be stored as structured data. If a benchmark is only116

handled by applications excepting a single, well-established data format, enforcing the use of117

another format would mean wrapping each tool into a conversion layer, ultimately yielding little118

benefit. E.g., neural networks are commonly exchanged in the ONNX format [21]. Other data119

formats can not be well represented by schema. E.g., SV-COMP’s [9] benchmarks include C120

programs, however, “valid C source code” can not be captured by any schema language.121

For these cases, we do not recommend conversion to a structured data format and description122

of facets via schemata. Instead, we suggest standardizing the format and describing it via a123

domain-specific media type instead of the structured data type – e.g., ONNX could be represented124

as application/x-onnx. Since the media type would prescribe both syntax and semantics,125

schemata would not be required.126

2.3 Storage and Descriptors127

To employ recombinable benchmarks in research, researchers must be able to locate and identify128

benchmarks they can use in their studies. We propose identifying recombinable benchmarks by129

accompanying them with a metadata file, rereso-benchmark.yml. This file would enumerate130

• essential metadata, such as name and license information,131

• the benchmark’s syntax as a media type,132

• for structured benchmarks, the URLs of all satisfied schemata, and133

• the relative location of the benchmark files.134

Interpretation of the location is somewhat dependent on the concrete storage used. However, most135

research data management services as well as informal storage solutions such as Git repositories136

offer a file system-like view of their contents, so relative paths can be interpreted here.137

ing.grid 2025 5

https://onnx.ai/
https://sv-comp.sosy-lab.org/

RESEARCH ARTICLE Recombinable Benchmarks and Software Tools

1 rereso-benchmark-version: '0.3'

2 metadata:

3 name: Renassiance Painting Database

4 description: A collection of Renassiance paintings.

5 references:

6 - https://paintings.art/

7 license:

8 spdx: CC0-1.0

9 format:

10 media-type: application/json5

11 schemas:

12 - https://images.art/images-2.json

13 - https://generic-schemas.org/described-items-0.1.json

14 - https://authorship.com/work-information-1.1.json

15 benchmarks:

16 - path: renassiance-paintings.json5

Figure 4: Benchmark descriptor for the Renaissance painting database.

A sample descriptor file for the painting example that showcases most fields of the proposed138

format is shown in Figure 4. Note that the format specifies both syntax (application/json5)139

and the facets. Each facet has been assigned a (fictitious) URL. The benchmark itself would be140

placed alongside this descriptor as renaissance-paintings.json5.141

3 Recombinable Tools142

This section describes our proposed tool format. We will first explain our reasoning in choosing143

a container format and then describe our descriptor format and its interaction with benchmark144

descriptors.145

3.1 Container Format146

For tools, the crucial feature is the capability to easily execute the tool on any machine. This147

necessitates bundling most of a tool’s execution environment in a container that can the be148

distributed. While in industry, Docker is likely the most prevalent technology for containerization,149

we instead recommend the use of Singularity [22] due to three reasons. First, the tool is already150

popular in scientific computing. Workflow management systems already offer native support for151

executing Singularity containers, and issues such as GPU usage are mostly abstracted away by152

the Singularity executor. Second, containers are intended to be distributed as a single file instead153

of via an external server, which simplifies long-term archiving as single-file artifacts. Third,154

Singularity offers easy interaction with the host file system. This satisfies our need for interfaces155

to inject configuration and benchmarks is easily met be the file system integration: benchmark156

and configuration files can be placed into a host directory and are immediately visible to the157

container. The same route can be used to return execution results.158

Unfortunately, this format comes with a major downside. Since we distribute compiled code,159

the resulting containers are bound to a specific host instruction set architecture (e.g, x86_64 or160

aarch64 onmodernApple devices). Even when distributing containers for multiple architectures,161

there is no guarantee that the software performs identically, and support for future architectures is162

ing.grid 2025 6

https://sylabs.io/singularity/

RESEARCH ARTICLE Recombinable Benchmarks and Software Tools

essentially impossible to achieve. However, we are not aware of any alternative containerization163

approach solving these issues.164

3.2 Storage and Descriptors165

Similar to benchmarks, our proposed descriptor file is stored in a rereso-tool.yml next to the166

tool container file. This descriptor contains167

• essential metadata, such as name and license information,168

• all ways to invoke the tool, each of which including input and output formats, and169

• the relative location of the tool container.170

The major difference to benchmark containers is the invocation syntax. We assume that a tool171

may offer multiple commands, each of which performs a different task. Each command is172

described informally. Therefore, users have to integrate a tool manually – offering an abstract,173

universal description of invoking programs is beyond the scope of this work. For each command,174

the descriptor specifies a number of input and output formats in the same syntax as used for175

benchmarks. A command may have zero inputs (e.g., a benchmark generator), zero outputs (e.g.,176

a test that only detects errors), or both.177

This allows for two forms of automation. First, since a command defines the required syntax178

and necessary semantics, identifying usable benchmarks can be done by checking the input179

constraint. Second, when building multiple-step command pipelines, each command’s output180

and input formats allows for a compatibility test.181

An example for a tool descriptor is shown in Figure 5, packaging the neural network learner from182

our motivating example as the file imlt.sif. The tool offers two commands, the neural network183

training (train-classifier) and a tool to apply the trained network to images (classify-184

all). For trainer, our example benchmark is a valid input and a neural network in the ONNX185

format is created. The classifier applies the network to a list of images and yields a list of inferred186

author-title-combinations. For this tool, we could use our benchmarks as the first input and the187

first command’s output as the second input.188

4 Case Study A: Heat Pump Mining189

Wewill first discuss a case study in a Software Engineering research project involving the authors.190

The goal of this project was to apply automata learning methods to reverse engineer (i.e., “mine”)191

a heat pump’s control logic from a long-running log of system events. The project is conducted192

in collaboration with a group at Queen’s University, Canada. The learning approach selected is193

based on the pipeline shown in Figure 6: the log is first processed using a discretizer based on194

the nfer framework [23]. The resulting log is then pared down to a subset of events. Then, a195

passive learner based on LearnLib [24] is used to derive a automaton model, which is evaluated196

on a validation data set. The selection, learning, and evaluation components are developed by197

the authors.198

The components developed by our collaborators use a data format that is a tree of CSV files199

inside a ZIP archive. For this case study, we developed a JSON-based structured benchmark200

ing.grid 2025 7

https://github.com/rv-tools/nfer
https://learnlib.de/

RESEARCH ARTICLE Recombinable Benchmarks and Software Tools

1 rereso-tool-version: '0.3'

2 metadata:

3 name: Image Metadata Learning Toolbox

4 description: A toolbox for learning authors and titles from images.

5 references:

6 - https://image-recognition.tools/

7 license:

8 spdx: AGPL-3.0-or-later

9 commands:

10 - name: train-classifier [input.json] [classifier.onnx]

11 input-formats:

12 - media-type: application/json5

13 schemas:

14 - https://images.art/images-2.json

15 - https://authorship.com/work-information-1.1.json

16 output-formats:

17 - media-type: application/x-onnx # not formally specified

18 - name: classify-all [images.json] [classifier.onnx] [result.json]

19 input-formats:

20 - media-type: application/json5

21 schemas:

22 - https://images.art/images-2.json

23 - media-type: application/x-onnx

24 output-formats:

25 - media-type: application/json5

26 schemas:

27 - https://authorship.com/work-information-1.1.json

28 container: imlt.sif

Figure 5: Tool descriptor for the machine learning tool to recognize creators from images.

format for exchanging logs that was used by our tools and a converter from the ZIP-based format201

into our JSON-based format that is run between the two phases. To validate the suitability of this202

format, we also developed converters for five existing log benchmarks in other formats. Finally,203

we bundled the software implementing both our work and our collaborators’ into two tools.204

4.1 Log Benchmark Format205

To create a suitable benchmark format, we surveyed existing data sets that have a log-like206

structure (i.e., they contain sequences of events). We defined five facets, shown in Figure 7 to207

describe the various features present in these benchmarks:208

Basic logs are plain lists of objects with a string value, as shown in Figure 7a. All log benchmarks209

are assumed to satisfy this facet, so criteria such as “at least one log per benchmark” are210

not repeated by other facets.211

Classified logs are shown in Figure 7b. This facet requires that each log has an attached classifier212

– e.g., a collection of system logs may classify them as “erroneous” or “error-free”. Note213

that this facet does not even demand the existence of logs, instead relying on the base facet214

will add in this constraint. Hypothetically, this facet could be generalized to classified215

objects in general.216

Normalized logs are shown in Figure 7c. For many logs, the events are free-form string,217

i.e., not from a limited set of events. For example, the log message login by user218

example@company.invalid could occur in infinite varieties, one for each mail address.219

ing.grid 2025 8

RESEARCH ARTICLE Recombinable Benchmarks and Software Tools

Raw

Logs

ZIP

Discretizer

Discret.

Logs

ZIP

Importer

Discret.

Logs

JSON

S
e
le
c
t
&

M
e
rg
e

Merged

Logs

JSON

Automata

Learner

Automaton

DOT
Evaluation

Result

CSV

Figure 6: Simplified architecture of the heat pump miner. Multiple tools are applied to the input data

in sequence. The last four tools are developed by the authors, while the first is developed by

collaborators.

Most automata models cannot represent such inputs. Normalization of such a log maps220

each entry to a finite set of normalized values plus parameters from a infinite set. In the221

example, this might result in the representation login(example@company.invalid)222

with the parameter being the email address. In a normalized log, the entries’ values are set223

to the normalized values and the original value plus the parameters are attached to each224

entry.225

TVT-split logs are logs that have already been split into training, validation and test sets, as226

shown in Figure 7d. This is useful to ensure reproducibility of experiments. Again, this227

does not refer to logs and could be generalized to split objects.228

Timed logs are sequences of values with relative or absolute timestamps (e.g., a classic system229

log), shown in Figure 7e. This facet requires each entry to define its start point relative230

to a log-specific value. If the absolute value of the latter is known, it can be stored as an231

epoch. Additionally, if available, both entries and logs may record their duration. This232

facet demonstrates how to handle variations in available information by using optional233

values.234

We codified each facet as a schema. For our use, we used (compressed) JSON files to encode235

logs. In total, our input data after discretization contained 2 268 logs with a total of 1 099 176236

entries that only satisfied the base and timed facets. Since the logs were gathered from a real237

system, the are all examples of expected behavior, so they can not be meaningfully classified.238

By leveraging libraries for serialization logic, we could implement the converter in only 35 lines239

of code using the Kotlin programming language.240

ing.grid 2025 9

RESEARCH ARTICLE Recombinable Benchmarks and Software Tools

Logs

+ name: String?

Log

+ name: String?

LogEntry

+ value: String

logs 1..*

entries 0..*

(a) base facet

ClassifiedLogs

ClassifiedLog

+ class: String

logs 0..*

(b) classified logs

NormalizedLogs

NormalizedLog

NormalizedLogEntry

+ denormalized: String

+ parameters: List<String>

logs 0..*

entries 0..*

(c) normalized entries

TVTSplitLogs

TVTSplitLog

+ split: Split

<<enum>>
Split

TRAINING

VALIDATION

TEST

logs 0..*

(d) TVT-split logs

TimedLogs

TimedLog

+ epoch: DateTime?

+ duration: Duration?

TimedLogEntry

+ relativeStart: Duration

+ duration: Duration?

logs 0..*

entries 0..*

(e) timed logs and entries

Figure 7: The five facets of logs defined in our case study. Note that the facets b–e are intended to

be used in combination with the base facet a.

4.2 Additional Log Benchmarks241

As a proof of concept, we also developed importers for several of the benchmark sets we242

considered when defining our format. Table 1 gives an overview of the benchmark sets and the243

complexity of the importer logic. We developed importers for the following five data sets:244

Abbadingo One The training data for the Abbadingo One [25] automata learning competition.245

These are a set of execution traces from synthetic automata, with participants having to246

infer a matching automaton from the traces. The test data do not contain classifiers and247

are therefore omitted.248

ALFRED The training and validation data from the ALFRED [26] benchmark’s reference249

actions. The benchmark is designed to evaluate domestic robots; the reference data250

contains simplified action specifications as logs. The test data is not classified in this251

benchmark, as well.252

ing.grid 2025 10

https://abbadingo.cs.nuim.ie/
https://askforalfred.com/

RESEARCH ARTICLE Recombinable Benchmarks and Software Tools

Data Set

Features # of

LOCCls. Norm. TVT Time Logs Entries

Heat Pump ✓ 2 268 1 099 176 35

Abbadingo One ✓ 440 000 8 390 011 37

ALFRED ✓ 7 080 53 094 75

DISC ✓ ✓ 106 620 5 371 800 53

LogHub Hadoop ✓ ✓ ✓ 978 179 994 101

MIT-AR ✓ ✓ 425 3 652 183

Cls.: classified logs Norm.: normalized entries TVT: training-validation-test split Time: timestamp

information LOC: lines of code in the importer

Table 1: Additional data sets converted into the ReReSo log format.

DISC The replication data for the DISC tool [27], a collection of processed benchmarks for253

replicating the referenced publication’s results. We retain the authors’ training-validation-254

test split.255

LogHub Hadoop The Hadoop server logs [28] from the LogHub data set [29], processed with256

the normalization data from the LogHub-2.0 companion data set [30]. These are real-world257

server logs with timestamps, classified as “normal operation” or by observed errors.258

MIT-AR The MITActivity Recognition [31] benchmark, two multi-day timestamped logs of259

interactions with household objects, classified by the domestic activities the household’s260

occupants performed at the moment.261

We also implemented these converters in our Kotlin framework. On average, a converter required262

less than 90 lines of code. The MIT-AR importer was the most complex to implement, resulting263

in 183 lines, mostly due to the difficulties of processing the Matlab data format on the JVM.264

Anecdotally, most converters could be implemented in a few hours. This demonstrates that the265

overhead of format conversion, even for existing benchmarks in unusual formats, is usually266

acceptable.267

4.3 Heat Pump Mining Tools268

To conclude this case study, we created recombinable tools from both our locally-developed269

software and the software by our collaborators. Since we implemented our functionality in a270

single application and its build system already supported creation of a Singularity container,271

conversion required only 10 lines of code to trigger the build process. For our collaborators’ tool,272

only marginally more work (28 lines of code) was required. In summary, packaging required273

only minimal effort, even for tools not developed with our recombinable format in mind.274

5 Case Study B: DuMu
x

275

Our second case study is on an existing tool from Environmental Engineering, DuMux [32],276

[33]. DuMux is an open-source simulation library based on DUNE [34] and can be used to realize277

flow and transport simulations in and around porous media. The DuMux library bundles a set278

ing.grid 2025 11

https://github.com/andrewli77/DISC
https://github.com/logpai/loghub
https://github.com/logpai/loghub-2.0
https://courses.media.mit.edu/2004fall/mas622j/04.projects/home/
https://dumux.org/
https://dune-project.org/

RESEARCH ARTICLE Recombinable Benchmarks and Software Tools

DuMu
x

Tests

TAR

Compile &

Run

Outputs

HDF5
Validate

reference data

Figure 8: Architecture of the split-tool DuMu
x
integration tests.

of integration tests that are deeply integrated into the library’s build process. These tests are279

two-stage: first, an small DuMux-based simulation application in C++ is compiled against the280

DuMux library and executed on test data; second, the result data (in HDF5 format) is compared281

against reference data using fieldcompare [35].282

In our case study, we made these tests recombinable. We define a non-structured benchmark283

format for DuMux integration tests and convert both the existing tests and a “real” DuMux-based284

tool into it. We then created three tools: one for the build-and-execute step for both DuMux 3.8.0285

and 3.9.0 and one for the reference data comparison step. Next, we obtained feedback from the286

DuMux development team on the work. Finally, we considered recombinability of DuMux-based287

tools by transforming a DuMux-based replication package into a benchmark and tool component.288

5.1 Integration Test Benchmark Format289

The existing integration tests for DuMux each consist of a set of C++ sources, input data and290

reference data. Additionally, research based on DuMux may be performed using a development291

build that incorporates features missing from the latest release version. Therefore, a benchmark292

might also contain a patch to DuMux that must be applied before compilation.293

The resulting benchmarks are therefore proprietary to DuMux– even without patching, only294

a fully API-compatible software could hypothetically run them. We therefore do not use a295

structured benchmark format, but instead define a benchmark as a compressed TAR archive296

containing the above-mentioned components and a descriptor file with file names etc.297

We implemented a generic converter for the DuMux-internal test cases. Written in Python, the298

converted comprises 372 lines of code and can transform all tests fully automatically into 15299

benchmarks. We also converted the Koch2024a replication artifact for a simulation of flow in300

brain tissue [36] into a benchmark using bespoke conversion logic (13 lines of code plus 145301

lines in patches and metadata). While development of the generic converter was more complex302

than the software developed for our first case study, the total effort remained limited.303

5.2 Integration Test Tools304

Transforming the test pipeline into recombinable tools was greatly simplified by the existence of305

DuMux Docker containers that could be used as the basis for our Singularity artifacts for building306

and executing. The fieldcompare wrapper bundled with DuMux, runtest.py, needed to be307

modified to handle our use case, but could be extracted from DuMux and integrated into a simple308

ing.grid 2025 12

https://git.iws.uni-stuttgart.de/dumux-pub/Koch2024a

RESEARCH ARTICLE Recombinable Benchmarks and Software Tools

container for Python applications. In total, this required 109 lines of packaging code, including309

changes to runtest.py.310

However, since our benchmark format deviates from the file layout expected by DuMux and311

runtest.py, we also needed to implement two adapter scripts that handle unpacking of the312

benchmark and invocation of the necessary commands inside the container. These amount to 71313

lines of shell script.314

5.3 Evaluation by DuMu
x
Developers315

We gathered feedback on our CI work from the DuMux development team. While the technical316

aspects worked as expected, feedback on the use of the proposed CI architecture in the scope of317

the DuMux project was more critical, with the unstableAPI of DuMux being seen as a hindrance to318

using our approach at the current state. This can be verified using our approach: most integration319

tests taken from DuMux 3.9.0 fail to build with DuMux 3.8.0.320

It was emphasized that the approach in general appears sound and could be used in conjunction321

with a more limited, stable API (e.g., a Python API). Also, interest in applying recombinability322

to DuMux-based tools such as replication packages was expressed.323

5.4 DuMu
x
-Based Replication Package324

We applied our previous experiences to transform the DuMux-based Koch2024a replication325

package [36] (which we already used as a benchmark) to a tool-benchmark-combination. Here,326

the tool is the complete simulation application, whereas the benchmark is its input data. Hypo-327

thetically, this data could be consumed by other tools performing the same simulation task. Since328

we can fully compile the tool during packaging, this is simpler to implement than the integration329

tests.330

We used a simplified version of the non-structured IT benchmark format for the benchmark331

that relied on naming conventions instead of a metadata file. Creation of the tool was greatly332

helped by the presence of a Docker build file in the replication package, which only required the333

addition of a 15-line wrapper script to handle unpacking. In total, the packaging code required334

34 lines of code. This showcases how, with increasing experience, the overhead imposed by our335

approach becomes almost negligible in combination with good software engineering practices.336

6 Conclusion337

We have developed formats for both benchmarks and tools that enable recombination. Bench-338

marks are stored as structured data, with facets described using JSON Schema or, less preferably,339

in domain-specific formats combining syntax and semantics. Tools are to be distributed as340

Singularity containers. We also developed descriptor formats that describe such artifacts in a341

machine-readable manner. This contributes to findability, interoperability, and reusability w.r.t.342

the FAIR and FAIR4RS principles.343

By applying our approach in two case studies, we demonstrated that it is useful for the tasks at344

hard, agnostic of research-disciplines, and only causes a very limited overhead. As summarized345

ing.grid 2025 13

https://git.iws.uni-stuttgart.de/dumux-pub/Koch2024a

RESEARCH ARTICLE

Case Study

of Lines of Code

Benchm. Tools Packaging Runtime

A HPM phase 1 tools 0 1 28 0

A HPM phase 2 tools 0 1 10 0

A other log benchmarks 140 0 68 0

B DuMux IT tools 0 3 109 71

B DuMux IT examples 15 0 372 0

B Koch2024a-based IT benchmark 1 0 13 145

B Koch2024a reproduction package 1 1 34 15

Table 2: Effort required to convert the DuMu
x
artifacts to our specification.

in Table 2, no artifact required more than 400 lines of code to create. While we did not precisely346

track development time, anecdotally, every conversion required less than a day of effort to347

implement.348

Future Work We envision multiple directions for future work. First, our proposed specification349

is ready to be applied to a wide variety of use cases in which research projects could benefit350

from recombinable artifacts. For example, our ralib-benchmarking framework [37] performs351

evaluations via a series of shell scripts that would benefit from proper packaging. Second,352

integration of our descriptors into systems such as into Betty’s (Re)Search Engine [38] would353

increase findability of recombinable tools. Third, in domains such as autonomous mobility354

research, tools are often combined into complex workflows, with data being distributed, merged355

etc. Our tool specification could serve as a building block to modeling complex workflows in356

this and other fields of study.357

7 Acknowledgements358

The authors would like to thank the Federal Government and the Heads of Government of the359

Länder, as well as the Joint Science Conference (GWK), for their funding and support within the360

framework of the NFDI4Ing consortium. Funded by the German Research Foundation (DFG) –361

project numbers 442146713 (NFDI4Ing); 495857894 (STING).362

We thank Bernd Flemisch for many productive discussions and his assistance with the DuMux363

tool. We also would like to thank both Sean Kauffman and Nastaran Kianersi for their feedback364

on case study A and the DuMux development team for theirs on case study B.365

8 Roles and contributions366

Simon Dierl: Conceptualization, Investigation, Methodology, Software, Writing – original draft367

Falk Howar: Conceptualization, Funding acquisition, Supervision, Writing – review & editing368

ing.grid 2025 14

https://github.com/LearnLib/ralib-benchmarking/
https://gepris.dfg.de/gepris/projekt/442146713
https://gepris.dfg.de/gepris/projekt/495857894

RESEARCH ARTICLE

References369

[1] Association for Computing Machinery, Artifact review and badging - current, Version 1.1,370

Aug. 2020. Accessed: Jan. 17, 2025. [Online]. Available: https://www.acm.org/publ371

ications/policies/artifact-review-and-badging-current.372

[2] European Association for Programming Languages and Systems, EAPLS artifact badges -373

May 2021, May 2021. Accessed: Oct. 6, 2024. [Online]. Available: https://eapls.or374

g/pages/artifact_badges/.375

[3] M. D. Wilkinson et al., “The FAIR Guiding Principles for scientific data management and376

stewardship,” Scientific Data, vol. 3, no. 1, Mar. 2016, Art. no. 160018, ISSN: 2052-4463.377

DOI: 10.1038/sdata.2016.18.378

[4] M. Barker et al., “Introducing the FAIR Principles for research software,” Scientific Data,379

vol. 9, no. 1, Oct. 2022, Art. no. 622, ISSN: 2052-4463. DOI: 10.1038/s41597-022-01380

710-x.381

[5] C. Collberg and T. A. Proebsting, “Repeatability in computer systems research,” Com-382

munications of the ACM, vol. 59, no. 3, pp. 62–69, Feb. 2016, ISSN: 0001-0782. DOI:383

10.1145/2812803.384

[6] O. Corcho et al., EOSC interoperability framework: report from the EOSC Executive385

Board Working Groups FAIR and Architecture. Publications Office of the European Union,386

2021, ISBN: 978-92-76-28949-4. DOI: 10.2777/620649.387

[7] M. R. Crusoe et al., “Methods included: Standardizing computational reuse and portability388

with the Common Workflow Language,” Communications of the ACM, vol. 65, no. 6,389

pp. 54–63, May 2022, ISSN: 0001-0782. DOI: 10.1145/3486897.390

[8] D. Neider, R. Smetsers, F. Vaandrager, and H. Kuppens, “Benchmarks for automata391

learning and conformance testing,” in Models, Mindsets, Meta: The What, the How, and392

the Why Not? Ser. Lecture Notes in Computer Science, T. Margaria, S. Graf, and K. G.393

Larsen, Eds., vol. 11200, Cham: Springer International Publishing, 2019, pp. 390–416,394

ISBN: 978-3-030-22348-9. DOI: 10.1007/978-3-030-22348-9_23.395

[9] D. Beyer and J. Strejček, “Improvements in software verification and witness validation:396

SV-COMP 2025,” in Tools and Algorithms for the Construction and Analysis of Systems,397

A. Gurfinkel and M. Heule, Eds., ser. Lecture Notes in Computer Science, vol. 15698,398

Cham: Springer Nature Switzerland, 2025, pp. 151–186, ISBN: 978-3-031-90660-2. DOI:399

10.1007/978-3-031-90660-2_9.400

[10] The OWASP Foundation, OWASP Benchmark, Oct. 1, 2016. [Online]. Available: https:401

//owasp.org/www-project-benchmark/.402

[11] NSA Center for Assured Software, Juliet Java 1.3, Oct. 1, 2017. [Online]. Available:403

https://samate.nist.gov/SARD/test-suites/111.404

[12] IARPA, IARPA STONESOUP phase 3 - virtual machine 3.0, May 1, 2015. [Online].405

Available: https://samate.nist.gov/SARD/test-suites/113.406

ing.grid 2025 15

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1145/2812803
https://doi.org/10.2777/620649
https://doi.org/10.1145/3486897
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-031-90660-2_9
https://owasp.org/www-project-benchmark/
https://owasp.org/www-project-benchmark/
https://owasp.org/www-project-benchmark/
https://samate.nist.gov/SARD/test-suites/111
https://samate.nist.gov/SARD/test-suites/113

RESEARCH ARTICLE

[13] OASIS Open, “Static analysis results interchange format (SARIF) version 2.1.0 plus errata407

01,” OASIS, OASIS Standard incorporating Approved Errata, Aug. 28, 2023. [Online].408

Available: https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os409

/sarif-v2.1.0-errata01-os-complete.html.410

[14] T. Bray, “The JavaScript object notation (JSON) data interchange format,” RFC Editor,411

Internet Standard 90, Dec. 2017. DOI: 10.17487/RFC8259.412

[15] YAML Language Development Team, “YAML ain’t markup language (YAML™) version413

1.2,” Tech. Rep., Oct. 2021, Revision 1.2.2. [Online]. Available: https://yaml.org/sp414

ec/1.2.2/.415

[16] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, and J. Cowan, “Extensi-416

ble markup language (XML) 1.1 (second edition),” W3C, W3C Recommendation, Aug.417

2006. [Online]. Available: https://www.w3.org/TR/2006/REC-xml11-20060816.418

[17] A. Kishore and J. Tucker, “The JSON5 data interchange format,” Tech. Rep., Mar. 2018.419

[Online]. Available: https://spec.json5.org/.420

[18] N. Freed and N. S. Borenstein, “Multipurpose internet mail extensions (MIME) part two:421

Media types,” RFC Editor, Request for Comments 2046, Nov. 1996. DOI: 10.17487422

/RFC2046.423

[19] A. Wright, H. Andrews, B. Hutton, and G. Dennis, “JSON Schema draft 2020-12,” JSON424

Schema, Tech. Rep., Jun. 16, 2022. [Online]. Available: https://json-schema.org/d425

raft/2020-12.426

[20] P. Walmsley and D. Fallside, “XML Schema part 0: Primer second edition,” W3C, W3C427

Recommendation, Oct. 2004. [Online]. Available: https://www.w3.org/TR/2004428

/REC-xmlschema-0-20041028/.429

[21] The Linux Foundation, ONNX 1.19.0 documentation, 2024. [Online]. Available: https:430

//onnx.ai/onnx/index.html.431

[22] G. M. Kurtzer, V. Sochat, and M.W. Bauer, “Singularity: Scientific containers for mobility432

of compute,” PLOS ONE, vol. 12, no. 5, May 2017, Art. no. e0177459, ISSN: 1932-6203.433

DOI: 10.1371/journal.pone.0177459.434

[23] S. Kauffman, K. Havelund, and R. Joshi, “Nfer – a notation and system for inferring event435

stream abstractions,” in Runtime Verification, Y. Falcone and C. Sánchez, Eds., ser. Lecture436

Notes in Computer Science, vol. 10012, Cham: Springer International Publishing, 2016,437

pp. 235–250, ISBN: 978-3-319-46982-9. DOI: 10.1007/978-3-319-46982-9_15.438

[24] M. Isberner, F. Howar, and B. Steffen, “The open-source LearnLib,” in Computer Aided439

Verification, D. Kroening and C. S. Păsăreanu, Eds., ser. Lecture Notes in Computer440

Science, vol. 9206, Cham: Springer International Publishing, 2015, pp. 487–495, ISBN:441

978-3-319-21690-4. DOI: 10.1007/978-3-319-21690-4_32.442

[25] K. J. Lang, B. A. Pearlmutter, and R. A. Price, “Results of the Abbadingo One DFA443

learning competition and a new evidence-driven state merging algorithm,” inGrammatical444

Inference, V. Honavar and G. Slutzki, Eds., ser. Lecture Notes in Computer Science,445

vol. 1433, Berlin, Heidelberg: Springer, 1998, pp. 1–12, ISBN: 978-3-540-68707-8. DOI:446

10.1007/BFb0054059.447

ing.grid 2025 16

https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-complete.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-complete.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-complete.html
https://doi.org/10.17487/RFC8259
https://yaml.org/spec/1.2.2/
https://yaml.org/spec/1.2.2/
https://yaml.org/spec/1.2.2/
https://www.w3.org/TR/2006/REC-xml11-20060816
https://spec.json5.org/
https://doi.org/10.17487/RFC2046
https://doi.org/10.17487/RFC2046
https://doi.org/10.17487/RFC2046
https://json-schema.org/draft/2020-12
https://json-schema.org/draft/2020-12
https://json-schema.org/draft/2020-12
https://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
https://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
https://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
https://onnx.ai/onnx/index.html
https://onnx.ai/onnx/index.html
https://onnx.ai/onnx/index.html
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1007/978-3-319-46982-9_15
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/BFb0054059

RESEARCH ARTICLE

[26] M. Shridhar et al., “ALFRED: A benchmark for interpreting grounded instructions for448

everyday tasks,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-449

nition (CVPR), Jun. 2020, pp. 10 737–10 746, ISBN: 978-1-7281-7168-5. DOI: 10.1109450

/CVPR42600.2020.01075.451

[27] M. Shvo,A. C. Li, R. Toro Icarte, and S.A.McIlraith, “Interpretable sequence classification452

via discrete optimization,” Proceedings of the AAAI Conference on Artificial Intelligence,453

vol. 35, no. 11, pp. 9647–9656, May 2021. DOI: 10.1609/aaai.v35i11.17161.454

[28] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering based problem455

identification for online service systems,” in 2016 IEEE/ACM 38th International Confer-456

ence on Software Engineering Companion (ICSE-C), New York, NY, USA: Association457

for Computing Machinery, May 2016, pp. 102–111, ISBN: 978-1-4503-4205-6. DOI:458

10.1145/2889160.2889232.459

[29] J. Zhu, S. He, P. He, J. Liu, and M. R. Lyu, “Loghub: A large collection of system log460

datasets for AI-driven log analytics,” in 2023 IEEE 34th International Symposium on461

Software Reliability Engineering (ISSRE), Oct. 2023, pp. 355–366, ISBN: 979-8-3503-462

1594-3. DOI: 10.1109/ISSRE59848.2023.00071.463

[30] Z. Jiang et al., “A large-scale evaluation for log parsing techniques: How far are we?” In464

Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing465

and Analysis, New York, NY, USA: Association for Computing Machinery, Sep. 2024,466

pp. 223–234, ISBN: 979-8-4007-0612-7. DOI: 10.1145/3650212.3652123.467

[31] E.M. Tapia, S. S. Intille, and K. Larson, “Activity recognition in the home using simple and468

ubiquitous sensors,” in Pervasive Computing, A. Ferscha and F. Mattern, Eds., ser. Lecture469

Notes in Computer Science, vol. 3001, Berlin, Heidelberg: Springer, 2004, pp. 158–175,470

ISBN: 978-3-540-24646-6. DOI: 10.1007/978-3-540-24646-6_10.471

[32] B. Flemisch et al., “DuMux: DUNE for multi-{phase, component, scale, physics, …} flow472

and transport in porous media,” Advances in Water Resources, vol. 34, no. 9, pp. 1102–473

1112, Sep. 2011, ISSN: 0309-1708. DOI: 10.1016/j.advwatres.2011.03.007.474

[33] T. Koch et al., “DuMux 3 – an open-source simulator for solving flow and transport475

problems in porous media with a focus on model coupling,” Computers & Mathematics476

with Applications, vol. 81, pp. 423–443, Jan. 2021, ISSN: 0898-1221. DOI: 10.1016/j477

.camwa.2020.02.012.478

[34] P. Bastian et al., “The DUNE framework: Basic concepts and recent developments,”479

Computers & Mathematics with Applications, vol. 81, pp. 75–112, Jan. 2021, ISSN:480

0898-1221. DOI: 10.1016/j.camwa.2020.06.007.481

[35] D. Gläser, T. Koch, S. Peters, S. Marcus, and B. Flemisch, “fieldcompare: A Python482

package for regression testing simulation results,” Journal of Open Source Software,483

vol. 8, no. 81, 2023, Art. no. 4905, ISSN: 2475-9066. DOI: 10.21105/joss.04905.484

[36] T. Koch and K.-A. Mardal, “Estimation of fluid flow velocities in cortical brain tis-485

sue driven by the microvasculature,” Interface Focus, vol. 15, no. 1, Apr. 2025, Art.486

no. 20240042, ISSN: 2042-8901. DOI: 10.1098/rsfs.2024.0042.487

ing.grid 2025 17

https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1609/aaai.v35i11.17161
https://doi.org/10.1145/2889160.2889232
https://doi.org/10.1109/ISSRE59848.2023.00071
https://doi.org/10.1145/3650212.3652123
https://doi.org/10.1007/978-3-540-24646-6_10
https://doi.org/10.1016/j.advwatres.2011.03.007
https://doi.org/10.1016/j.camwa.2020.02.012
https://doi.org/10.1016/j.camwa.2020.02.012
https://doi.org/10.1016/j.camwa.2020.02.012
https://doi.org/10.1016/j.camwa.2020.06.007
https://doi.org/10.21105/joss.04905
https://doi.org/10.1098/rsfs.2024.0042

RESEARCH ARTICLE Recombinable Benchmarks and Software Tools

[37] S. Dierl, P. Fiterau-Brostean, F. Howar, B. Jonsson, K. Sagonas, and F. Tåquist, “Scalable488

tree-based register automata learning,” in Tools and Algorithms for the Construction and489

Analysis of Systems, B. Finkbeiner and L. Kovács, Eds., ser. Lecture Notes in Computer490

Science, vol. 14571, Cham: Springer Nature Switzerland, 2024, pp. 87–108, ISBN: 978-491

3-031-57249-4. DOI: 10.1007/978-3-031-57249-4_5.492

[38] V. Seibert, A. Rausch, and S. Wittek, “Betty’s (Re)Search Engine: A client-based search493

engine for research software stored in repositories.,” ing.grid, vol. 1, 2 May 2024, ISSN:494

2941-1300. DOI: 10.48694/inggrid.3953.495

ing.grid 2025 18

https://doi.org/10.1007/978-3-031-57249-4_5
https://doi.org/10.48694/inggrid.3953

	Introduction
	Recombinable Benchmarks
	Structured Benchmarks
	Unstructured Benchmarks
	Storage and Descriptors

	Recombinable Tools
	Container Format
	Storage and Descriptors

	Case Study A: Heat Pump Mining
	Log Benchmark Format
	Additional Log Benchmarks
	Heat Pump Mining Tools

	Case Study B: DuMux
	Integration Test Benchmark Format
	Integration Test Tools
	Evaluation by DuMux Developers
	DuMux-Based Replication Package

	Conclusion
	Acknowledgements
	Roles and contributions

